Effective perturbation theory for simple isolated eigenvalues of linear operators

IF 0.7 4区 数学 Q2 MATHEMATICS
Benoît R. Kloeckner
{"title":"Effective perturbation theory for simple isolated eigenvalues of linear operators","authors":"Benoît R. Kloeckner","doi":"10.7900/jot.2017dec22.2179","DOIUrl":null,"url":null,"abstract":"We propose a new approach to the spectral theory of perturbed linear operators in the case of a simple isolated eigenvalue. We obtain two kinds of results: ``radius bounds'' which ensure perturbation theory applies for perturbations up to an explicit size, and ``regularity bounds'' which control the variations of eigendata to any order. Our method is based on the implicit function theorem and proceeds by establishing differential inequalities on two natural quantities: the norm of the projection to the eigendirection, and the norm of the reduced resolvent. We obtain completely explicit results without any assumption on the underlying Banach space. In companion articles, on the one hand we apply the regularity bounds to Markov chains, obtaining non-asymptotic concentration and Berry-Esseen inequalities with explicit constants, and on the other hand we apply the radius bounds to transfer operators of intermittent maps, obtaining explicit high-temperature regimes where a spectral gap occurs.","PeriodicalId":50104,"journal":{"name":"Journal of Operator Theory","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2018-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7900/jot.2017dec22.2179","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

Abstract

We propose a new approach to the spectral theory of perturbed linear operators in the case of a simple isolated eigenvalue. We obtain two kinds of results: ``radius bounds'' which ensure perturbation theory applies for perturbations up to an explicit size, and ``regularity bounds'' which control the variations of eigendata to any order. Our method is based on the implicit function theorem and proceeds by establishing differential inequalities on two natural quantities: the norm of the projection to the eigendirection, and the norm of the reduced resolvent. We obtain completely explicit results without any assumption on the underlying Banach space. In companion articles, on the one hand we apply the regularity bounds to Markov chains, obtaining non-asymptotic concentration and Berry-Esseen inequalities with explicit constants, and on the other hand we apply the radius bounds to transfer operators of intermittent maps, obtaining explicit high-temperature regimes where a spectral gap occurs.
线性算子简单孤立特征值的有效摄动理论
本文提出了一种简单孤立特征值情况下摄动线性算子谱理论的新方法。我们得到了两种结果:“半径界”保证扰动理论适用于一个显式大小的扰动,“规则界”控制特征数据的任意阶的变化。我们的方法是基于隐函数定理,并通过建立两个自然量上的微分不等式:特征方向的投影范数和简化解的范数。我们得到了完全显式的结果,而不需要对底层的Banach空间做任何假设。在相应的文章中,我们一方面将正则界应用于马尔可夫链,得到了具有显式常数的非渐近集中和Berry-Esseen不等式;另一方面,我们将半径界应用于间歇映射的转移算子,得到了出现谱隙的显式高温区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
12.50%
发文量
23
审稿时长
12 months
期刊介绍: The Journal of Operator Theory is rigorously peer reviewed and endevours to publish significant articles in all areas of operator theory, operator algebras and closely related domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信