Foued Khoffi, Yosri Khalsi, Abdel Tazibt, Slah Msahli, Frédéric Heim
{"title":"POLİESTER MONOFİLAMENTTEN ÜRETİLMİŞ BİYOMEDİKAL TEKSTİL İÇİN YÜZEY İŞLEMİ","authors":"Foued Khoffi, Yosri Khalsi, Abdel Tazibt, Slah Msahli, Frédéric Heim","doi":"10.7216/teksmuh.1222529","DOIUrl":null,"url":null,"abstract":"Foreign Body Reaction is a critical issue to be addressed when polyethylene terephthalate textile implants are considered in the medical field to treat pathologies involving hernia repair, or heart valve replacement. The natural porosity of textile materials tends to induce exaggerated tissue ingrowth which may prevent the implants from remaining flexible. One hypothesized way to limit the Foreign Body Reaction process is to increase the material surface roughness. Supercritical jet particle projection is a technique that provides enough velocity to particles in order to generate plastic deformation on the impacted surface. The aim of this study is to investigate the influence of micro particles laden supercritical nitrogen jet projection parameters like jet static pressure, standoff distance and particle size on the roughness of polyethylene terephthalate fabric surfaces. Results bring out that particles projected by supercritical nitrogen jet generate craters on the surface of monofilament as well as monofilament fabric, allowing topographical modifications at the yarn scale. Thus, this treatment increased the roughness of the monofilament fabric from 0.78 μm to 1.22 μm. Regarding the strength of the textile material, it is only slightly modified with the treatment process, as the tenacity of the yarns decreases by only 10%. In this work, it is revealed that the obtained structures tend to limit the adhesion and slow down the proliferation of human fibroblasts. The results obtained in this work show that it is possible to create a roughness on a polyethylene terephthalate fabric using the nitrogen jet technology.","PeriodicalId":35281,"journal":{"name":"Tekstil ve Muhendis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tekstil ve Muhendis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7216/teksmuh.1222529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Foreign Body Reaction is a critical issue to be addressed when polyethylene terephthalate textile implants are considered in the medical field to treat pathologies involving hernia repair, or heart valve replacement. The natural porosity of textile materials tends to induce exaggerated tissue ingrowth which may prevent the implants from remaining flexible. One hypothesized way to limit the Foreign Body Reaction process is to increase the material surface roughness. Supercritical jet particle projection is a technique that provides enough velocity to particles in order to generate plastic deformation on the impacted surface. The aim of this study is to investigate the influence of micro particles laden supercritical nitrogen jet projection parameters like jet static pressure, standoff distance and particle size on the roughness of polyethylene terephthalate fabric surfaces. Results bring out that particles projected by supercritical nitrogen jet generate craters on the surface of monofilament as well as monofilament fabric, allowing topographical modifications at the yarn scale. Thus, this treatment increased the roughness of the monofilament fabric from 0.78 μm to 1.22 μm. Regarding the strength of the textile material, it is only slightly modified with the treatment process, as the tenacity of the yarns decreases by only 10%. In this work, it is revealed that the obtained structures tend to limit the adhesion and slow down the proliferation of human fibroblasts. The results obtained in this work show that it is possible to create a roughness on a polyethylene terephthalate fabric using the nitrogen jet technology.