Hamid Haghshenas Gorgani, H. Korani, Reihaneh Jahedan, Sharif Shabani
{"title":"A Nonlinear Error Compensator for FDM 3D Printed Part Dimensions Using a Hybrid Algorithm Based on GMDH Neural Network","authors":"Hamid Haghshenas Gorgani, H. Korani, Reihaneh Jahedan, Sharif Shabani","doi":"10.22059/JCAMECH.2021.325325.628","DOIUrl":null,"url":null,"abstract":"Following the advances in Computer-Aided Design (CAD) and Additive Manufacturing (AM), with regards to the numerous benefits of the Fused Deposition Modeling (FDM) as a popular AM process, resolving its weaknesses has become increasingly important. A serious problem of the FDM is the dimensional error or size difference between the CAD model and the actual 3D printed part.In this study, the approach is compensating the error regardless of its source. At First, all parameters affecting the dimensional accuracy of FDM are comprehensively identified. Then, multi-input–single-output (MISO) data is prepared by designing experiments using the Taguchi method and obtaining the results from 3D printed samples. Next, a GMDH neural network is applied, which uses a simple nonlinear regression formula in each neuron but can create very complex neuron combinations. So, it is possible to analyze small or even noisy data. Regulatory parameters of the Neural Net have been optimized to increase efficiency. The case study shows a decrease in the RSME for the Nominal CAD Model from 0.377 to 0.033, displaying the compensator's efficiency.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"52 1","pages":"451-477"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22059/JCAMECH.2021.325325.628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
Following the advances in Computer-Aided Design (CAD) and Additive Manufacturing (AM), with regards to the numerous benefits of the Fused Deposition Modeling (FDM) as a popular AM process, resolving its weaknesses has become increasingly important. A serious problem of the FDM is the dimensional error or size difference between the CAD model and the actual 3D printed part.In this study, the approach is compensating the error regardless of its source. At First, all parameters affecting the dimensional accuracy of FDM are comprehensively identified. Then, multi-input–single-output (MISO) data is prepared by designing experiments using the Taguchi method and obtaining the results from 3D printed samples. Next, a GMDH neural network is applied, which uses a simple nonlinear regression formula in each neuron but can create very complex neuron combinations. So, it is possible to analyze small or even noisy data. Regulatory parameters of the Neural Net have been optimized to increase efficiency. The case study shows a decrease in the RSME for the Nominal CAD Model from 0.377 to 0.033, displaying the compensator's efficiency.
期刊介绍:
The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.