Global stability dynamics and sensitivity assessment of COVID-19 with timely-delayed diagnosis in Ghana

Q2 Mathematics
S. Moore, Hetsron L. Nyandjo-Bamen, Olivier Menoukeu-Pamen, Joshua Kiddy K. Asamoah, Zhen Jin
{"title":"Global stability dynamics and sensitivity assessment of COVID-19 with timely-delayed diagnosis in Ghana","authors":"S. Moore, Hetsron L. Nyandjo-Bamen, Olivier Menoukeu-Pamen, Joshua Kiddy K. Asamoah, Zhen Jin","doi":"10.1515/cmb-2022-0134","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the dynamical effects of timely and delayed diagnosis on the spread of COVID-19 in Ghana during its initial phase by using reported data from March 12 to June 19, 2020. The estimated basic reproduction number, ℛ0, for the proposed model is 1.04. One of the main focus of this study is global stability results. Theoretically and numerically, we show that the disease persistence depends on ℛ0. We carry out a local and global sensitivity analysis. The local sensitivity analysis shows that the most positive sensitive parameter is the recruitment rate, followed by the relative transmissibility rate from the infectious with delayed diagnosis to the susceptible individuals. And that the most negative sensitive parameters are: self-quarantined, waiting time of the infectious for delayed diagnosis and the proportion of the infectious with timely diagnosis. The global sensitivity analysis using the partial rank correlation coefficient confirms the directional flow of the local sensitivity analysis. For public health benefit, our analysis suggests that, a reduction in the inflow of new individuals into the country or a reduction in the inter community inflow of individuals will reduce the basic reproduction number and thereby reduce the number of secondary infections (multiple peaks of the infection). Other recommendations for controlling the disease from the proposed model are provided in Section 7.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"10 1","pages":"87 - 104"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2022-0134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract In this paper, we study the dynamical effects of timely and delayed diagnosis on the spread of COVID-19 in Ghana during its initial phase by using reported data from March 12 to June 19, 2020. The estimated basic reproduction number, ℛ0, for the proposed model is 1.04. One of the main focus of this study is global stability results. Theoretically and numerically, we show that the disease persistence depends on ℛ0. We carry out a local and global sensitivity analysis. The local sensitivity analysis shows that the most positive sensitive parameter is the recruitment rate, followed by the relative transmissibility rate from the infectious with delayed diagnosis to the susceptible individuals. And that the most negative sensitive parameters are: self-quarantined, waiting time of the infectious for delayed diagnosis and the proportion of the infectious with timely diagnosis. The global sensitivity analysis using the partial rank correlation coefficient confirms the directional flow of the local sensitivity analysis. For public health benefit, our analysis suggests that, a reduction in the inflow of new individuals into the country or a reduction in the inter community inflow of individuals will reduce the basic reproduction number and thereby reduce the number of secondary infections (multiple peaks of the infection). Other recommendations for controlling the disease from the proposed model are provided in Section 7.
加纳新冠肺炎延迟诊断的全球稳定性动态和敏感性评估
本文利用2020年3月12日至6月19日的报告数据,研究了及时诊断和延迟诊断对COVID-19在加纳传播初期的动态影响。该模型的估计基本复制数,即贡献率为1.04。本研究的主要焦点之一是全球稳定性结果。从理论上和数值上证明了疾病的持续程度依赖于指数。我们进行了局部和全局敏感性分析。局部敏感性分析显示,最阳性的敏感参数是招募率,其次是延迟诊断的传染病对易感个体的相对传播率。最负性敏感参数为:自我隔离、延迟诊断等待时间和及时诊断比例。采用偏秩相关系数的全局敏感性分析证实了局部敏感性分析的方向性。为了公共卫生利益,我们的分析表明,减少进入该国的新个体流入或减少社区间个体流入将减少基本繁殖数量,从而减少继发感染数量(感染的多个高峰)。根据所提出的模型控制疾病的其他建议见第7节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信