Identities in $3$-prime near-rings with left multipliers

Q4 Mathematics
M. Ashraf, A. Boua
{"title":"Identities in $3$-prime near-rings with left multipliers","authors":"M. Ashraf, A. Boua","doi":"10.22124/JART.2018.10093.1096","DOIUrl":null,"url":null,"abstract":"Let $mathcal{N}$ be a $3$-prime near-ring with the center$Z(mathcal{N})$ and $n geq 1$ be a fixed positive integer. Inthe present paper it is shown that a $3$-prime near-ring$mathcal{N}$ is a commutative ring if and only if it admits aleft multiplier $mathcal{F}$ satisfying any one of the followingproperties: $(i):mathcal{F}^{n}([x, y])in Z(mathcal{N})$, $(ii):mathcal{F}^{n}(xcirc y)in Z(mathcal{N})$,$(iii):mathcal{F}^{n}([x, y])pm(xcirc y)in Z(mathcal{N})$ and $(iv):mathcal{F}^{n}([x, y])pm xcirc yin Z(mathcal{N})$, for all $x, yinmathcal{N}$.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"6 1","pages":"67-77"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2018.10093.1096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Let $mathcal{N}$ be a $3$-prime near-ring with the center$Z(mathcal{N})$ and $n geq 1$ be a fixed positive integer. Inthe present paper it is shown that a $3$-prime near-ring$mathcal{N}$ is a commutative ring if and only if it admits aleft multiplier $mathcal{F}$ satisfying any one of the followingproperties: $(i):mathcal{F}^{n}([x, y])in Z(mathcal{N})$, $(ii):mathcal{F}^{n}(xcirc y)in Z(mathcal{N})$,$(iii):mathcal{F}^{n}([x, y])pm(xcirc y)in Z(mathcal{N})$ and $(iv):mathcal{F}^{n}([x, y])pm xcirc yin Z(mathcal{N})$, for all $x, yinmathcal{N}$.
具有左乘子的3素数近环的恒等式
设$mathcal{N}$是一个以$Z(mathcal{N})$为中心的$3$素数近环,$ N geq 1$是一个固定的正整数。本文证明了$3$素数近环$mathcal{N}$是一个交换环,当且仅当它允许左乘子$mathcal{F}$满足下列性质中的任意一个:$(i):mathcal{F}^{N} ([x, y])在Z(mathcal{N})$,$(ii):mathcal{F}^{N} (xcirc y)在Z(mathcal{N})$,$(iii):mathcal{F}^{N} ([x, y])pm(xcirc y)在Z(mathcal{N})$,$(iv):mathcal{F}^{N} ([x, y])pm xcirc yin Z(mathcal{N})$,对于所有$x, inmathcal{N}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra and Related Topics
Journal of Algebra and Related Topics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信