Application of soft computing in estimating primary crack spacing of reinforced concrete structures

IF 1.1 Q4 MECHANICS
O. Alomari, M. Al-Rawashdeh
{"title":"Application of soft computing in estimating primary crack spacing of reinforced concrete structures","authors":"O. Alomari, M. Al-Rawashdeh","doi":"10.1515/cls-2022-0194","DOIUrl":null,"url":null,"abstract":"Abstract The investigation related to the serviceability analysis, particularly in terms of crack spacing prediction, has remarkably increased recently. In addition, the prediction of serviceability analysis is highly dependent and influenced by different physical and material factors that contribute to the crack spacing of reinforced concrete (RC) structures. As a result, the cracking phenomenon has not been fully grasped due to these factors’ wide variety and complexity. Recently, soft computing techniques have gained considerable popularity due to their capability of learning and producing generalized solutions and exhibiting desirable performance in terms of time, effort, and cost. However, the literature on crack spacing prediction using various machine learning approaches is limited and insufficient. Therefore, this article is dedicated to estimating the primary crack spacing of RC structures using different machine learning methods. As a part of the study, the findings of these approaches will be computed and compared to the benchmark experimental results. Besides, the results of the developed models will be compared against that of available approaches in the literature to highlight their reliability. Furthermore, a parametric assessment will be conducted to emphasize the most influencing input parameter on the primary crack spacing of RC structures.","PeriodicalId":44435,"journal":{"name":"Curved and Layered Structures","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Curved and Layered Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cls-2022-0194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The investigation related to the serviceability analysis, particularly in terms of crack spacing prediction, has remarkably increased recently. In addition, the prediction of serviceability analysis is highly dependent and influenced by different physical and material factors that contribute to the crack spacing of reinforced concrete (RC) structures. As a result, the cracking phenomenon has not been fully grasped due to these factors’ wide variety and complexity. Recently, soft computing techniques have gained considerable popularity due to their capability of learning and producing generalized solutions and exhibiting desirable performance in terms of time, effort, and cost. However, the literature on crack spacing prediction using various machine learning approaches is limited and insufficient. Therefore, this article is dedicated to estimating the primary crack spacing of RC structures using different machine learning methods. As a part of the study, the findings of these approaches will be computed and compared to the benchmark experimental results. Besides, the results of the developed models will be compared against that of available approaches in the literature to highlight their reliability. Furthermore, a parametric assessment will be conducted to emphasize the most influencing input parameter on the primary crack spacing of RC structures.
软计算在钢筋混凝土结构主裂缝间距估算中的应用
摘要近年来,对耐磨性分析的研究,特别是裂纹间距预测方面的研究显著增加。此外,可用性分析的预测高度依赖于钢筋混凝土结构裂缝间距的各种物理和材料因素,并受到这些因素的影响。由于这些因素的多样性和复杂性,对开裂现象的认识还不够全面。最近,软计算技术由于其学习和生成通用解决方案的能力以及在时间、精力和成本方面表现出理想的性能而获得了相当大的普及。然而,使用各种机器学习方法预测裂缝间距的文献是有限的和不足的。因此,本文致力于使用不同的机器学习方法来估计钢筋混凝土结构的主裂缝间距。作为研究的一部分,这些方法的结果将被计算并与基准实验结果进行比较。此外,将所开发模型的结果与文献中可用方法的结果进行比较,以突出其可靠性。此外,还将进行参数评估,以强调对RC结构主裂缝间距影响最大的输入参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
13.30%
发文量
25
审稿时长
14 weeks
期刊介绍: The aim of Curved and Layered Structures is to become a premier source of knowledge and a worldwide-recognized platform of research and knowledge exchange for scientists of different disciplinary origins and backgrounds (e.g., civil, mechanical, marine, aerospace engineers and architects). The journal publishes research papers from a broad range of topics and approaches including structural mechanics, computational mechanics, engineering structures, architectural design, wind engineering, aerospace engineering, naval engineering, structural stability, structural dynamics, structural stability/reliability, experimental modeling and smart structures. Therefore, the Journal accepts both theoretical and applied contributions in all subfields of structural mechanics as long as they contribute in a broad sense to the core theme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信