Ultra-precision cutting of linear micro-groove array for distributed feedback laser devices

Q3 Engineering
B. Guo, Xin Yu, Zhaoqi Zeng, Qingliang Zhao, Lei Xu, Li Xiaoliang
{"title":"Ultra-precision cutting of linear micro-groove array for distributed feedback laser devices","authors":"B. Guo, Xin Yu, Zhaoqi Zeng, Qingliang Zhao, Lei Xu, Li Xiaoliang","doi":"10.1504/IJNM.2018.10009990","DOIUrl":null,"url":null,"abstract":"The tunable range and beam linewidth of distributed feedback laser were determined by fabrication quality of the periodic linear micro-groove array on substrate, which grooves are high sloped and ranged sub-micron to few microns. Compared with the common micro-groove arrays (size from tens of microns to sub-millimetre), the ultra-precision cutting of these tiny and high-sloped linear micro-groove arrays are more difficult to realise. In this paper, a series of investigations was proposed for ultra-precision cutting of linear micro-groove array on polymethyl methacrylate (PMMA). Firstly, the different cutting processes included planing and fly-cutting were conducted. The workpiece morphology, surface quality and machining efficiency of these processes were investigated. Then, the fly cutting process was optimised by the calculation of non-free chip zone and the analysis of chip interference by cutting experiments. Finally, a novel tool positioning method based on acoustic emission was presented in order to realise high accuracy control of micro-groove arrays dimensions.","PeriodicalId":14170,"journal":{"name":"International Journal of Nanomanufacturing","volume":"14 1","pages":"9"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanomanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNM.2018.10009990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

Abstract

The tunable range and beam linewidth of distributed feedback laser were determined by fabrication quality of the periodic linear micro-groove array on substrate, which grooves are high sloped and ranged sub-micron to few microns. Compared with the common micro-groove arrays (size from tens of microns to sub-millimetre), the ultra-precision cutting of these tiny and high-sloped linear micro-groove arrays are more difficult to realise. In this paper, a series of investigations was proposed for ultra-precision cutting of linear micro-groove array on polymethyl methacrylate (PMMA). Firstly, the different cutting processes included planing and fly-cutting were conducted. The workpiece morphology, surface quality and machining efficiency of these processes were investigated. Then, the fly cutting process was optimised by the calculation of non-free chip zone and the analysis of chip interference by cutting experiments. Finally, a novel tool positioning method based on acoustic emission was presented in order to realise high accuracy control of micro-groove arrays dimensions.
分布反馈激光器件线性微槽阵列的超精密切割
分布反馈激光器的可调谐范围和光束线宽取决于衬底上的周期性线性微槽阵列的制作质量,这些微槽阵列具有高斜度和亚微米到几微米的范围。与普通的微槽阵列(尺寸从几十微米到亚毫米)相比,这些微小的高斜率线性微槽阵列的超精密切割更难以实现。本文对线性微槽阵列在聚甲基丙烯酸甲酯(PMMA)上的超精密切割进行了一系列研究。首先,进行了不同的切削工艺,包括刨削和飞削。研究了这些加工方法的工件形貌、表面质量和加工效率。然后,通过非自由切屑区计算和切屑干扰分析,对飞削工艺进行优化。最后,为了实现微槽阵列尺寸的高精度控制,提出了一种基于声发射的刀具定位方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Nanomanufacturing
International Journal of Nanomanufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信