Yanxia Huang, Q. Huang, L. Cui, Keyue Zhang, Ming Zhang
{"title":"A method for predicting failure load of masonry wall panel based on structural stress state","authors":"Yanxia Huang, Q. Huang, L. Cui, Keyue Zhang, Ming Zhang","doi":"10.30765/ER.40.2.01","DOIUrl":null,"url":null,"abstract":"This paper proposed a method for predicting the failure loads of masonry wall panels subject to uniformly distributed lateral loading based on a concept of structural stress state. Firstly, the characteristics of the structural stress state of masonry wall panels subjected to uniform distributed lateral loading were investigated through experimental results. Then, a new parameter was proposed to characterize the structural stress state. Next, the relation of the failure loads between a specified base wall panels and other wall panel was established using the proposed parameter. In this way, a method (called as stress state (ST) method) based on structural stress state parameter to predict the failure load of masonry wall panel from the base wall panel was established. The following case studies validated the ST method by comparing the predicted failure load with experimental results as well as those predicted from the existing yield line theory(YLT), the FEA method and the GSED-based cellular automata (CA) method. The ST method provided an innovative way of structural analysis on the basis of structural stress state.","PeriodicalId":44022,"journal":{"name":"Engineering Review","volume":"40 1","pages":"1-9"},"PeriodicalIF":0.7000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.30765/ER.40.2.01","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30765/ER.40.2.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
This paper proposed a method for predicting the failure loads of masonry wall panels subject to uniformly distributed lateral loading based on a concept of structural stress state. Firstly, the characteristics of the structural stress state of masonry wall panels subjected to uniform distributed lateral loading were investigated through experimental results. Then, a new parameter was proposed to characterize the structural stress state. Next, the relation of the failure loads between a specified base wall panels and other wall panel was established using the proposed parameter. In this way, a method (called as stress state (ST) method) based on structural stress state parameter to predict the failure load of masonry wall panel from the base wall panel was established. The following case studies validated the ST method by comparing the predicted failure load with experimental results as well as those predicted from the existing yield line theory(YLT), the FEA method and the GSED-based cellular automata (CA) method. The ST method provided an innovative way of structural analysis on the basis of structural stress state.
期刊介绍:
Engineering Review is an international journal designed to foster the exchange of ideas and transfer of knowledge between scientists and engineers involved in various engineering sciences that deal with investigations related to design, materials, technology, maintenance and manufacturing processes. It is not limited to the specific details of science and engineering but is instead devoted to a very wide range of subfields in the engineering sciences. It provides an appropriate resort for publishing the papers covering prior applications – based on the research topics comprising the entire engineering spectrum. Topics of particular interest thus include: mechanical engineering, naval architecture and marine engineering, fundamental engineering sciences, electrical engineering, computer sciences and civil engineering. Manuscripts addressing other issues may also be considered if they relate to engineering oriented subjects. The contributions, which may be analytical, numerical or experimental, should be of significance to the progress of mentioned topics. Papers that are merely illustrations of established principles or procedures generally will not be accepted. Occasionally, the magazine is ready to publish high-quality-selected papers from the conference after being renovated, expanded and written in accordance with the rules of the magazine. The high standard of excellence for any of published papers will be ensured by peer-review procedure. The journal takes into consideration only original scientific papers.