Bo-Tao Zhang, Zihan Yan, Yuchun Liu, Zhuo Chen, Yikai Zhang, M. Fan
{"title":"Nanoconfinement in advanced oxidation processes","authors":"Bo-Tao Zhang, Zihan Yan, Yuchun Liu, Zhuo Chen, Yikai Zhang, M. Fan","doi":"10.1080/10643389.2022.2146981","DOIUrl":null,"url":null,"abstract":"Abstract Advanced oxidation processes (AOPs) based on the generation of reactive radicals are widely accepted to be effective technologies for mineralizing refractory organic contaminants or pretreating bio-recalcitrant compounds. The efficiencies of AOPs suffer from the low availability of ultrashort lifetime radicals due to their rapid self-quenching, mass transfer and nonselective limitations. Heterogeneous AOPs are hampered due to the declining activity and stability of catalysts resulting from aggregation, leakage and poisoning. The effectiveness, selectivity and reactivity of highly reactive species of AOPs can be greatly enhanced when the oxidation reactions are conducted in confined nanospaces. The stability, accessibility, variety and activity of nanoconfined catalysts would be improved by confining the nanoparticle catalysts inside porous scaffolds or substrates. Other confined systems, such as surface confinement, quantum confinement and electron confinement, have also been applied in different AOPs to improve the contaminant degradation performance. The above-mentioned nanoconfinement applications in AOPs are systematically summarized in this critical review. Prospects and challenges are presented to stimulate future interest and breakthroughs for nanoconfinement in AOPs. GRAPHICAL ABSTRACT","PeriodicalId":10823,"journal":{"name":"Critical Reviews in Environmental Science and Technology","volume":"53 1","pages":"1197 - 1228"},"PeriodicalIF":11.4000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10643389.2022.2146981","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 13
Abstract
Abstract Advanced oxidation processes (AOPs) based on the generation of reactive radicals are widely accepted to be effective technologies for mineralizing refractory organic contaminants or pretreating bio-recalcitrant compounds. The efficiencies of AOPs suffer from the low availability of ultrashort lifetime radicals due to their rapid self-quenching, mass transfer and nonselective limitations. Heterogeneous AOPs are hampered due to the declining activity and stability of catalysts resulting from aggregation, leakage and poisoning. The effectiveness, selectivity and reactivity of highly reactive species of AOPs can be greatly enhanced when the oxidation reactions are conducted in confined nanospaces. The stability, accessibility, variety and activity of nanoconfined catalysts would be improved by confining the nanoparticle catalysts inside porous scaffolds or substrates. Other confined systems, such as surface confinement, quantum confinement and electron confinement, have also been applied in different AOPs to improve the contaminant degradation performance. The above-mentioned nanoconfinement applications in AOPs are systematically summarized in this critical review. Prospects and challenges are presented to stimulate future interest and breakthroughs for nanoconfinement in AOPs. GRAPHICAL ABSTRACT
期刊介绍:
Two of the most pressing global challenges of our era involve understanding and addressing the multitude of environmental problems we face. In order to tackle them effectively, it is essential to devise logical strategies and methods for their control. Critical Reviews in Environmental Science and Technology serves as a valuable international platform for the comprehensive assessment of current knowledge across a wide range of environmental science topics.
Environmental science is a field that encompasses the intricate and fluid interactions between various scientific disciplines. These include earth and agricultural sciences, chemistry, biology, medicine, and engineering. Furthermore, new disciplines such as environmental toxicology and risk assessment have emerged in response to the increasing complexity of environmental challenges.
The purpose of Critical Reviews in Environmental Science and Technology is to provide a space for critical analysis and evaluation of existing knowledge in environmental science. By doing so, it encourages the advancement of our understanding and the development of effective solutions. This journal plays a crucial role in fostering international cooperation and collaboration in addressing the pressing environmental issues of our time.