A Weibull-Beta Prime Distribution to Model COVID-19 Data with the Presence of Covariates and Censored Data

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2022-11-17 DOI:10.3390/stats5040069
Elisângela C. Biazatti, G. Cordeiro, Gabriela M. Rodrigues, E. Ortega, L. H. de Santana
{"title":"A Weibull-Beta Prime Distribution to Model COVID-19 Data with the Presence of Covariates and Censored Data","authors":"Elisângela C. Biazatti, G. Cordeiro, Gabriela M. Rodrigues, E. Ortega, L. H. de Santana","doi":"10.3390/stats5040069","DOIUrl":null,"url":null,"abstract":"Motivated by the recent popularization of the beta prime distribution, a more flexible generalization is presented to fit symmetrical or asymmetrical and bimodal data, and a non-monotonic failure rate. Thus, the Weibull-beta prime distribution is defined, and some of its structural properties are obtained. The parameters are estimated by maximum likelihood, and a new regression model is proposed. Some simulations reveal that the estimators are consistent, and applications to censored COVID-19 data show the adequacy of the models.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats5040069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

Abstract

Motivated by the recent popularization of the beta prime distribution, a more flexible generalization is presented to fit symmetrical or asymmetrical and bimodal data, and a non-monotonic failure rate. Thus, the Weibull-beta prime distribution is defined, and some of its structural properties are obtained. The parameters are estimated by maximum likelihood, and a new regression model is proposed. Some simulations reveal that the estimators are consistent, and applications to censored COVID-19 data show the adequacy of the models.
包含协变量和删节数据的COVID-19数据建模的Weibull-Beta Prime分布
由于近年来β素数分布的普及,提出了一种更灵活的泛化方法来拟合对称或非对称和双峰数据,以及非单调故障率。由此,定义了Weibull-beta素数分布,并得到了它的一些结构性质。采用极大似然法对参数进行估计,提出了一种新的回归模型。一些模拟表明,估计量是一致的,对删减的COVID-19数据的应用表明了模型的充分性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信