When and where Proactively predicting traffic accident in South Africa: our machine learning competition winning approach

S. Afolabi, Warrie Usenobong Warrie, O. Banjo, Opeoluwa Iwashokun, Abimbola Olawale, Naledi Ngqambela, Fata Soliu, Olawumi Olasunkanmi, Folorunso Sakinat, Sibusiso Sibusiso Matshika
{"title":"When and where Proactively predicting traffic accident in South Africa: our machine learning competition winning approach","authors":"S. Afolabi, Warrie Usenobong Warrie, O. Banjo, Opeoluwa Iwashokun, Abimbola Olawale, Naledi Ngqambela, Fata Soliu, Olawumi Olasunkanmi, Folorunso Sakinat, Sibusiso Sibusiso Matshika","doi":"10.1504/ijsss.2021.116374","DOIUrl":null,"url":null,"abstract":"South Africa (SA) records high mortality originating from traffic accident annually making the country to be ranked highly among nations with the highest traffic mortality globally. There is seemingly no study that has attempted to forecast when and where next accident will occur in SA. This study aims to use machine learning method to predict traffic accident in SA for every hour ranging between 1 January and 31 March 2019 at a segment ID. We obtained details of accidents that occurred in Cape Town, SA between 2016 and 2019 SANRAL, Uber Movement and Cape Town FMS via Zindi competition platform. This research adopted Catboost and LightGBM models to predict the traffic incident occurrence. Our model shows a F1 score of 0.11. The results of this research will aid prediction of accident occurrence at a particular road segment hourly.","PeriodicalId":89681,"journal":{"name":"International journal of society systems science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of society systems science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijsss.2021.116374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

South Africa (SA) records high mortality originating from traffic accident annually making the country to be ranked highly among nations with the highest traffic mortality globally. There is seemingly no study that has attempted to forecast when and where next accident will occur in SA. This study aims to use machine learning method to predict traffic accident in SA for every hour ranging between 1 January and 31 March 2019 at a segment ID. We obtained details of accidents that occurred in Cape Town, SA between 2016 and 2019 SANRAL, Uber Movement and Cape Town FMS via Zindi competition platform. This research adopted Catboost and LightGBM models to predict the traffic incident occurrence. Our model shows a F1 score of 0.11. The results of this research will aid prediction of accident occurrence at a particular road segment hourly.
何时何地主动预测南非交通事故:我们的机器学习竞赛获胜方法
南非每年都有交通事故造成的高死亡率记录,使该国在全球交通死亡率最高的国家中排名靠前。似乎没有任何研究试图预测SA下一次事故发生的时间和地点。本研究旨在使用机器学习方法预测2019年1月1日至3月31日期间SA每小时的路段ID交通事故。我们获得了2016年至2019年南非开普敦发生的事故的详细信息,优步运动和开普敦FMS通过Zindi竞赛平台。本研究采用Catboost和LightGBM模型来预测交通事故的发生。我们的模型显示F1得分为0.11。这项研究的结果将有助于预测特定路段每小时发生的事故。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信