Tim Moser, Julius Durmann, Maximilian Bonauer, B. Lohmann
{"title":"MORpH: Model reduction of linear port-Hamiltonian systems in MATLAB","authors":"Tim Moser, Julius Durmann, Maximilian Bonauer, B. Lohmann","doi":"10.1515/auto-2022-0119","DOIUrl":null,"url":null,"abstract":"Abstract We present a novel software toolbox MORpH for the efficient storage, analysis, interconnection and structure-preserving model order reduction (MOR) of linear port-Hamiltonian differential-algebraic equation systems (pH-DAEs). The model class of pH-DAEs enables energy-based modeling and a flexible coupling of models across different physical domains. This makes them particularly suited for the simulation and control of complex technical systems. To promote the use of recent theoretical findings in engineering practice, efficient software solutions are required. In this work, we illustrate how possibly large-scale pH-DAEs can be efficiently stored and interconnected in MATLAB in an object-oriented way. We discuss three structure-preserving MOR strategies that are supported by MORpH and demonstrate the application and performance of selected MOR algorithms by means of two benchmark examples.","PeriodicalId":55437,"journal":{"name":"At-Automatisierungstechnik","volume":"71 1","pages":"476 - 489"},"PeriodicalIF":0.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"At-Automatisierungstechnik","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1515/auto-2022-0119","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We present a novel software toolbox MORpH for the efficient storage, analysis, interconnection and structure-preserving model order reduction (MOR) of linear port-Hamiltonian differential-algebraic equation systems (pH-DAEs). The model class of pH-DAEs enables energy-based modeling and a flexible coupling of models across different physical domains. This makes them particularly suited for the simulation and control of complex technical systems. To promote the use of recent theoretical findings in engineering practice, efficient software solutions are required. In this work, we illustrate how possibly large-scale pH-DAEs can be efficiently stored and interconnected in MATLAB in an object-oriented way. We discuss three structure-preserving MOR strategies that are supported by MORpH and demonstrate the application and performance of selected MOR algorithms by means of two benchmark examples.
期刊介绍:
Automatisierungstechnik (AUTO) publishes articles covering the entire range of automation technology: development and application of methods, the operating principles, characteristics, and applications of tools and the interrelationships between automation technology and societal developments. The journal includes a tutorial series on "Theory for Users," and a forum for the exchange of viewpoints concerning past, present, and future developments. Automatisierungstechnik is the official organ of GMA (The VDI/VDE Society for Measurement and Automatic Control) and NAMUR (The Process-Industry Interest Group for Automation Technology).
Topics
control engineering
digital measurement systems
cybernetics
robotics
process automation / process engineering
control design
modelling
information processing
man-machine interfaces
networked control systems
complexity management
machine learning
ambient assisted living
automated driving
bio-analysis technology
building automation
factory automation / smart factories
flexible manufacturing systems
functional safety
mechatronic systems.