H. Leboucher, J. Mascetti, Christian Aupetit, J. Noble, A. Simon
{"title":"Water Clusters in Interaction with Corannulene in a Rare Gas Matrix: Structures, Stability and IR Spectra","authors":"H. Leboucher, J. Mascetti, Christian Aupetit, J. Noble, A. Simon","doi":"10.3390/photochem2020018","DOIUrl":null,"url":null,"abstract":"The interaction of polycyclic aromatic hydrocarbons (PAHs) with water is of paramount importance in atmospheric and astrophysical contexts. We report here a combined theoretical and experimental study of corannulene-water interactions in low temperature matrices and of the matrix’s influence on the photoreactivity of corannulene with water. The theoretical study was performed using a mixed density functional based tight binding/force field approach to describe the corannulene-water clusters trapped in an argon matrix, together with Born-Oppenheimer molecular dynamics to determine finite-temperature IR spectra. The results are discussed in the light of experimental matrix isolation FTIR spectroscopic data. We show that in the solid phase, π isomers of (C20H10)(H2O)n, with n = 2 or 3, are energetically favored. These π complexes are characterized by small shifts in corannulene vibrational modes and large shifts in water bands. These π structures, particularly stable in the case of the water trimer where the water cluster is trapped “inside” the corannulene bowl, may account for the difference in photoreactivity of non-planar–compared to planar–PAHs with water. Indeed, planar PAHs such as pyrene and coronene embedded in H2O:Ar matrices form σ isomers and react with water to form alcohols and quinones under low energy UV irradiation, whereas no photoreactivity was observed for corannulene under the same experimental conditions.","PeriodicalId":74440,"journal":{"name":"Photochem","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photochem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/photochem2020018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The interaction of polycyclic aromatic hydrocarbons (PAHs) with water is of paramount importance in atmospheric and astrophysical contexts. We report here a combined theoretical and experimental study of corannulene-water interactions in low temperature matrices and of the matrix’s influence on the photoreactivity of corannulene with water. The theoretical study was performed using a mixed density functional based tight binding/force field approach to describe the corannulene-water clusters trapped in an argon matrix, together with Born-Oppenheimer molecular dynamics to determine finite-temperature IR spectra. The results are discussed in the light of experimental matrix isolation FTIR spectroscopic data. We show that in the solid phase, π isomers of (C20H10)(H2O)n, with n = 2 or 3, are energetically favored. These π complexes are characterized by small shifts in corannulene vibrational modes and large shifts in water bands. These π structures, particularly stable in the case of the water trimer where the water cluster is trapped “inside” the corannulene bowl, may account for the difference in photoreactivity of non-planar–compared to planar–PAHs with water. Indeed, planar PAHs such as pyrene and coronene embedded in H2O:Ar matrices form σ isomers and react with water to form alcohols and quinones under low energy UV irradiation, whereas no photoreactivity was observed for corannulene under the same experimental conditions.