Fatigue Effects on Peak Plantar Pressure and Bilateral Symmetry during Gait at Various Speeds

J. Buxton, K. Shields, H. Nhean, Jared Ramsey, Christopher Adams, George A. Richards
{"title":"Fatigue Effects on Peak Plantar Pressure and Bilateral Symmetry during Gait at Various Speeds","authors":"J. Buxton, K. Shields, H. Nhean, Jared Ramsey, Christopher Adams, George A. Richards","doi":"10.3390/biomechanics3030027","DOIUrl":null,"url":null,"abstract":"Fatigue-related changes in gait biomechanics, specifically plantar pressures, are well documented in the general population. However, research is generally confined to unilateral measures across a limited range of speeds, while changes in more well-trained populations remain largely unknown. Therefore, we sought to assess the impact of fatigue on bilateral peak plantar pressure (PP) and plantar pressure symmetry angle (SA) in well-trained runners across a range of speeds. Data from 16 (females, n = 9) well-trained runners were collected using in-sole pressure sensors pre- and post-fatigue at the following speeds: walking (1.3 m/s), jogging (2.7 m/s), running (3.3 m/s), and sprinting (4.5 m/s). Pre-fatigue PP significantly increased from walking to jogging (p < 0.001) and from jogging to running (p < 0.005) with no difference between running and sprinting (p > 0.05). Post-fatigue PP for walking was less than jogging (p < 0.002), running (p < 0.001), and sprinting (p < 0.001), with no other significant differences (p > 0.05). Post-fatigue PP was significantly greater when compared to pre-fatigue PP at all speeds (p < 0.001 for all). Though SA was not significantly different pre- to post-fatigue across speeds (p’s > 0.05) at the cohort level, noteworthy changes were observed at the individual level. Overall, fatigue effects are present at all running speeds but isolating these effects to a single side (left or right) may be inadequate.","PeriodicalId":72381,"journal":{"name":"Biomechanics (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/biomechanics3030027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fatigue-related changes in gait biomechanics, specifically plantar pressures, are well documented in the general population. However, research is generally confined to unilateral measures across a limited range of speeds, while changes in more well-trained populations remain largely unknown. Therefore, we sought to assess the impact of fatigue on bilateral peak plantar pressure (PP) and plantar pressure symmetry angle (SA) in well-trained runners across a range of speeds. Data from 16 (females, n = 9) well-trained runners were collected using in-sole pressure sensors pre- and post-fatigue at the following speeds: walking (1.3 m/s), jogging (2.7 m/s), running (3.3 m/s), and sprinting (4.5 m/s). Pre-fatigue PP significantly increased from walking to jogging (p < 0.001) and from jogging to running (p < 0.005) with no difference between running and sprinting (p > 0.05). Post-fatigue PP for walking was less than jogging (p < 0.002), running (p < 0.001), and sprinting (p < 0.001), with no other significant differences (p > 0.05). Post-fatigue PP was significantly greater when compared to pre-fatigue PP at all speeds (p < 0.001 for all). Though SA was not significantly different pre- to post-fatigue across speeds (p’s > 0.05) at the cohort level, noteworthy changes were observed at the individual level. Overall, fatigue effects are present at all running speeds but isolating these effects to a single side (left or right) may be inadequate.
不同速度步态疲劳对足底压力峰值和双侧对称性的影响
步态生物力学中与疲劳相关的变化,特别是足底压力,在普通人群中有很好的记录。然而,研究通常局限于在有限的速度范围内采取单方面措施,而训练有素的人群的变化在很大程度上仍然未知。因此,我们试图评估疲劳对训练有素的跑步者在不同速度下双侧足底压力峰值(PP)和足底压力对称角(SA)的影响。使用足底压力传感器收集了16名(女性,n=9)训练有素的跑步者在以下速度下疲劳前后的数据:步行(1.3 m/s)、慢跑(2.7 m/s)、跑步(3.3 m/s)和短跑(4.5 m/s)。疲劳前PP从步行到慢跑(p<0.001)和从慢跑到跑步(p<0.005)显著增加,跑步和短跑之间没有差异(p>0.05)。疲劳后步行PP低于慢跑(p>0.002)、跑步(p>0.001)和短跑(p<001),无其他显著差异(p>0.05)。疲劳后PP在所有速度下均显著高于疲劳前PP(p均<0.001)。尽管在队列水平上,SA在疲劳前后的速度上没有显著差异(p>0.05),但在个体水平上观察到了显著的变化。总的来说,疲劳效应在所有运行速度下都存在,但将这些效应隔离在一侧(左侧或右侧)可能不够。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信