Perbandingan Algoritma Klasifikasi Untuk Penjurusan Siswa SMA

Abdul Rahman Kadafi
{"title":"Perbandingan Algoritma Klasifikasi Untuk Penjurusan Siswa SMA","authors":"Abdul Rahman Kadafi","doi":"10.31961/eltikom.v2i2.86","DOIUrl":null,"url":null,"abstract":"Penentuan jurusan siswa pada tingkat pendidikan sekolah menengah atas pada umumnya menggunakan rekomendasi hasil psikotes, nilai akademik, minat dan bakat siswa. Tidak semua sekolah memiliki data yang lengakap untuk melakukan penjursan siswa. Dalam penelitian ini, difokuskan untuk mengomparasikan hasil nilai akademik siswa, untuk mata pelajaran rumpun ilmu pengetahuan alam dan ilmu pengetahaun sosial pada kelas 10 SMA. Nilai dari mata pelajaran yang manakah yang memiliki pengaruh tinggi terhadap penjurusan siswa di SMA. Terdapat beberapa algoritma dapat digunakan untuk membantu proses klasifikasi data siswa untuk rekomendasi penjurusan, misalnya C4.5, Naïve Bayes, K-NN, Rule Induction, dan lain-lain. Untuk mengetahui tingkat validasi digunakan metode cross validation. Kemudian digunakan T-Test untuk mengetahui signifikansi perbedaan antar algoritma. Hasil analisa komparasi pada penelitian komparasi algoritma untuk penjurusan ini, bahwa metode algoritma Naïve Bayes sebagai algoritma yang paling baik dibandingkan algoritma yang lainnya, yang meiliki akurasi pada 79,51% dan AUC pada nilai 0,861.","PeriodicalId":33096,"journal":{"name":"Jurnal ELTIKOM Jurnal Teknik Elektro Teknologi Informasi dan Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal ELTIKOM Jurnal Teknik Elektro Teknologi Informasi dan Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31961/eltikom.v2i2.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Penentuan jurusan siswa pada tingkat pendidikan sekolah menengah atas pada umumnya menggunakan rekomendasi hasil psikotes, nilai akademik, minat dan bakat siswa. Tidak semua sekolah memiliki data yang lengakap untuk melakukan penjursan siswa. Dalam penelitian ini, difokuskan untuk mengomparasikan hasil nilai akademik siswa, untuk mata pelajaran rumpun ilmu pengetahuan alam dan ilmu pengetahaun sosial pada kelas 10 SMA. Nilai dari mata pelajaran yang manakah yang memiliki pengaruh tinggi terhadap penjurusan siswa di SMA. Terdapat beberapa algoritma dapat digunakan untuk membantu proses klasifikasi data siswa untuk rekomendasi penjurusan, misalnya C4.5, Naïve Bayes, K-NN, Rule Induction, dan lain-lain. Untuk mengetahui tingkat validasi digunakan metode cross validation. Kemudian digunakan T-Test untuk mengetahui signifikansi perbedaan antar algoritma. Hasil analisa komparasi pada penelitian komparasi algoritma untuk penjurusan ini, bahwa metode algoritma Naïve Bayes sebagai algoritma yang paling baik dibandingkan algoritma yang lainnya, yang meiliki akurasi pada 79,51% dan AUC pada nilai 0,861.
高中毕业分类算法的比较
高中阶段学生的决定通常基于精神病推荐、学术价值观、兴趣和学生天赋。并不是所有的学校都有数据可以进行学生入侵。在本研究中,重点比较了学生的学术价值观结果,以期对高中十年级的科学和社会科学进行基层研究。课程对高中毕业有很大影响的价值观。有一些算法可以用来帮助为毕业推荐对学生数据进行分类,如C4.5、朴素贝叶斯、K-NN、规则归纳等。为了确定验证级别,使用了交叉验证方法。然后使用T-检验来找出算法之间差异的显著性。在对该周长的算法比较研究中,比较分析的结果表明,与其他算法相比,Naïve Bayes算法方法是最好的算法,其准确率为79.51%,AUC为0.861。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
10
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信