Portfolio Optimization using Artificial Intelligence: A Systematic Literature Review

Exacta Pub Date : 2022-08-12 DOI:10.5585/exactaep.2022.21882
G. C. Santos, Flavio Barboza, Antônio C. P. Veiga, Kamyr Gomes
{"title":"Portfolio Optimization using Artificial Intelligence: A Systematic Literature Review","authors":"G. C. Santos, Flavio Barboza, Antônio C. P. Veiga, Kamyr Gomes","doi":"10.5585/exactaep.2022.21882","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) models can help investors find portfolios in which the focus is to optimize the risk-return relationship. There are several algorithms and techniques in the literature that allow the application of tests to a set of historical data for the selection and validation of investment portfolios. Based on this, this research intends to examine the contribution of the main machine learning techniques used in portfolio management through a systematic literature review. By using the Methodi Ordinatio for selection and ranking of articles, we classified papers considering object of study, type of AI used, period of analysis, data frequency, balance and cardinality. In addition, we detail the main contributions and trends conceived until the year 2020. Therefore, our findings reveal gaps and suggest future works on the topic.","PeriodicalId":30294,"journal":{"name":"Exacta","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exacta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5585/exactaep.2022.21882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) models can help investors find portfolios in which the focus is to optimize the risk-return relationship. There are several algorithms and techniques in the literature that allow the application of tests to a set of historical data for the selection and validation of investment portfolios. Based on this, this research intends to examine the contribution of the main machine learning techniques used in portfolio management through a systematic literature review. By using the Methodi Ordinatio for selection and ranking of articles, we classified papers considering object of study, type of AI used, period of analysis, data frequency, balance and cardinality. In addition, we detail the main contributions and trends conceived until the year 2020. Therefore, our findings reveal gaps and suggest future works on the topic.
基于人工智能的投资组合优化:系统文献综述
人工智能(AI)模型可以帮助投资者找到以优化风险回报关系为重点的投资组合。文献中有几种算法和技术允许对一组历史数据进行测试,以选择和验证投资组合。基于此,本研究打算通过系统的文献综述来检验主要机器学习技术在投资组合管理中的贡献。采用排序法(Methodi Ordinatio)对文章进行选择和排序,根据研究对象、使用的人工智能类型、分析周期、数据频率、平衡性和基数对论文进行分类。此外,我们还详细介绍了到2020年的主要贡献和设想的趋势。因此,我们的研究结果揭示了差距,并建议未来的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
57
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信