{"title":"ANALYSIS OF BEHAVIOUR OF CALCIUM SILICATE HOLLOW BLOCKS MASONRY SUBJECTED TO THE CONCENTRATED LOAD","authors":"Mindaugas Zavalis","doi":"10.3846/EST.2020.14041","DOIUrl":null,"url":null,"abstract":"Loading of masonry with concentrated load is a sufficiently common case of loading which occurs due to structures of various purposes and sizes which lean against masonry wall, column or partition wall. Reinforced concrete or metal beams, reinforced beams, wooden structures of roof or span are leaned against masonry structures most usually. Investigations show that masonry structures under concentrated load withstand higher loads than structures of which the whole surface area is compressed. In most cases traditional bricks’ masonry under concentrated load was investigated. Its head joints are filled with mortar. This paper describes the experimental and numerical modeling results of investigation of calcium silicate hollow blocks masonry with thin layered mortar and unfilled head joints compressed by concentrated load. The more dangerous case when the edge of masonry unit (wall) is affected by concentrated load was chosen for analysis. Preliminary investigations have shown that the bed joints transmiss horizontal stresses. The stress distribution angle is close to 60°, i.e. close to stress distribution in masonry with filled head joints.","PeriodicalId":11839,"journal":{"name":"Engineering Structures and Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3846/EST.2020.14041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Loading of masonry with concentrated load is a sufficiently common case of loading which occurs due to structures of various purposes and sizes which lean against masonry wall, column or partition wall. Reinforced concrete or metal beams, reinforced beams, wooden structures of roof or span are leaned against masonry structures most usually. Investigations show that masonry structures under concentrated load withstand higher loads than structures of which the whole surface area is compressed. In most cases traditional bricks’ masonry under concentrated load was investigated. Its head joints are filled with mortar. This paper describes the experimental and numerical modeling results of investigation of calcium silicate hollow blocks masonry with thin layered mortar and unfilled head joints compressed by concentrated load. The more dangerous case when the edge of masonry unit (wall) is affected by concentrated load was chosen for analysis. Preliminary investigations have shown that the bed joints transmiss horizontal stresses. The stress distribution angle is close to 60°, i.e. close to stress distribution in masonry with filled head joints.