Advanced manufacturing applied to nuclear fusion—challenges and solutions

IF 7 3区 材料科学 Q1 ENERGY & FUELS
Steve Jones
{"title":"Advanced manufacturing applied to nuclear fusion—challenges and solutions","authors":"Steve Jones","doi":"10.1088/2515-7655/acf687","DOIUrl":null,"url":null,"abstract":"Materials needed to achieve designed performance will require formulations and processing methods capable of delivering a compendium of metallic, ceramic and cermet chemistries, which must be finely tuned at source, and tolerant to down-stream thermomechanical adjustment. Structural steels and cermets are continuously being developed by researchers using computational thermodynamics modelling and modified thermomechanical treatments, with oxide dispersion strengthened steel (ODS)-reduced activated ferritic-martensitic steel (RAFM) steels based on 8%–16% wt.% Cr now being assessed. The combination of SiCf and CuCrZr as a metal matrix composite containing an active coolant would be seen as a major opportunity, furthermore, composite ceramic materials consisting of SiC fibres reinforcing a SiC matrix capable of being joined to metallic structures offer great potential in the development of advanced heat exchangers. Continuing the theme of advanced manufacturing, the use of solid-state processing technologies involving powder metallurgy–hot isostatic pressing and spark plasma sintering to produce near-net shaped products in metallics, ceramics and cermets are critical manufacturing research themes. Additive manufacturing (AM) to produce metallic and ceramic components is now becoming a feasible manufacturing route, and through the combination of AM and subtractive machining, capability exists to produce efficient fluid carrying structures that could not be manufactured by any other process. Extending this to using electron beam welding and advanced heat treatments to improve homogeneity and provide modularity, a two-pronged solution is now available to improve capability and integrity, whilst concurrently offering increased degrees of freedom for designers.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2515-7655/acf687","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

Materials needed to achieve designed performance will require formulations and processing methods capable of delivering a compendium of metallic, ceramic and cermet chemistries, which must be finely tuned at source, and tolerant to down-stream thermomechanical adjustment. Structural steels and cermets are continuously being developed by researchers using computational thermodynamics modelling and modified thermomechanical treatments, with oxide dispersion strengthened steel (ODS)-reduced activated ferritic-martensitic steel (RAFM) steels based on 8%–16% wt.% Cr now being assessed. The combination of SiCf and CuCrZr as a metal matrix composite containing an active coolant would be seen as a major opportunity, furthermore, composite ceramic materials consisting of SiC fibres reinforcing a SiC matrix capable of being joined to metallic structures offer great potential in the development of advanced heat exchangers. Continuing the theme of advanced manufacturing, the use of solid-state processing technologies involving powder metallurgy–hot isostatic pressing and spark plasma sintering to produce near-net shaped products in metallics, ceramics and cermets are critical manufacturing research themes. Additive manufacturing (AM) to produce metallic and ceramic components is now becoming a feasible manufacturing route, and through the combination of AM and subtractive machining, capability exists to produce efficient fluid carrying structures that could not be manufactured by any other process. Extending this to using electron beam welding and advanced heat treatments to improve homogeneity and provide modularity, a two-pronged solution is now available to improve capability and integrity, whilst concurrently offering increased degrees of freedom for designers.
先进制造应用于核聚变——挑战与解决方案
实现设计性能所需的材料将需要能够提供金属、陶瓷和金属陶瓷化学简编的配方和加工方法,这些化学简编必须在源头上进行微调,并能承受下游的热机械调整。研究人员利用计算热力学建模和改进的热机械处理不断开发结构钢和金属陶瓷,目前正在评估基于8%-16%wt.%Cr的氧化物分散强化钢(ODS)-还原活性铁素体-马氏体钢(RAFM)钢。SiCf和CuCrZr作为含有活性冷却剂的金属基质复合材料的组合将被视为一个主要的机会,此外,由SiC纤维组成的复合陶瓷材料增强了能够连接到金属结构的SiC基质,在开发先进的热交换器方面提供了巨大的潜力。继续先进制造业的主题,使用涉及粉末冶金的固态加工技术——热等静压和火花等离子体烧结,生产金属、陶瓷和金属陶瓷中的近净形状产品,是关键的制造研究主题。生产金属和陶瓷部件的增材制造(AM)现在正成为一种可行的制造路线,通过AM和减法加工的结合,有能力生产任何其他工艺都无法制造的高效流体承载结构。将其扩展到使用电子束焊接和先进的热处理来提高均匀性并提供模块化,现在可以使用双管齐下的解决方案来提高性能和完整性,同时为设计师提供更多的自由度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.90
自引率
1.40%
发文量
58
期刊介绍: The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信