Confidence Intervals for Relative Intensity of Collaboration (RIC) Indicators

J. E. Fuchs, Lawrence J. Smolinsky, R. Rousseau
{"title":"Confidence Intervals for Relative Intensity of Collaboration (RIC) Indicators","authors":"J. E. Fuchs, Lawrence J. Smolinsky, R. Rousseau","doi":"10.2478/jdis-2022-0021","DOIUrl":null,"url":null,"abstract":"Abstract Purpose We aim to extend our investigations related to the Relative Intensity of Collaboration (RIC) indicator, by constructing a confidence interval for the obtained values. Design/methodology/approach We use Mantel-Haenszel statistics as applied recently by Smolinsky, Klingenberg, and Marx. Findings We obtain confidence intervals for the RIC indicator Research limitations It is not obvious that data obtained from the Web of Science (or any other database) can be considered a random sample. Practical implications We explain how to calculate confidence intervals. Bibliometric indicators are more often than not presented as precise values instead of an approximation depending on the database and the time of measurement. Our approach presents a suggestion to solve this problem. Originality/value Our approach combines the statistics of binary categorical data and bibliometric studies of collaboration.","PeriodicalId":92237,"journal":{"name":"Journal of data and information science (Warsaw, Poland)","volume":"7 1","pages":"5 - 15"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data and information science (Warsaw, Poland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jdis-2022-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Purpose We aim to extend our investigations related to the Relative Intensity of Collaboration (RIC) indicator, by constructing a confidence interval for the obtained values. Design/methodology/approach We use Mantel-Haenszel statistics as applied recently by Smolinsky, Klingenberg, and Marx. Findings We obtain confidence intervals for the RIC indicator Research limitations It is not obvious that data obtained from the Web of Science (or any other database) can be considered a random sample. Practical implications We explain how to calculate confidence intervals. Bibliometric indicators are more often than not presented as precise values instead of an approximation depending on the database and the time of measurement. Our approach presents a suggestion to solve this problem. Originality/value Our approach combines the statistics of binary categorical data and bibliometric studies of collaboration.
相对协作强度(RIC)指标的置信区间
摘要目的通过为所得值构建置信区间,扩展我们对相对协作强度(RIC)指标的研究。设计/方法/方法我们使用了最近由Smolinsky、Klingenberg和Marx应用的Mantel-Haenszel统计。我们获得了RIC指标的置信区间研究局限性从Web of Science(或任何其他数据库)获得的数据不明显可以被视为随机样本。我们解释如何计算置信区间。文献计量指标往往以精确值而不是根据数据库和测量时间的近似值表示。我们的方法提出了解决这个问题的建议。我们的方法结合了二元分类数据的统计和文献计量学研究的合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信