Nilpotent graphs of skew polynomial rings over non-commutative rings

IF 0.6 Q3 MATHEMATICS
M. Nikmehr
{"title":"Nilpotent graphs of skew polynomial rings over non-commutative rings","authors":"M. Nikmehr","doi":"10.22108/TOC.2019.117529.1651","DOIUrl":null,"url":null,"abstract":"Let $R$ be a ring and $alpha$ be a ring endomorphism of $R$. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set $Z_N(R)^*$, and two distinct vertices $x$ and $y$ are connected by an edge if and only if $xy$ is nilpotent, where $Z_N(R)={xin R;|; xy; rm{is; nilpotent,;for; some}; yin R^*}.$ In this article, we investigate the interplay between the ring theoretical properties of a skew polynomial ring $R[x;alpha]$ and the graph-theoretical properties of its nilpotent graph $Gamma_N(R[x;alpha])$. It is shown that if $R$ is a symmetric and $alpha$-compatible with exactly two minimal primes, then $diam(Gamma_N(R[x,alpha]))=2$. Also we prove that $Gamma_N(R)$ is a complete graph if and only if $R$ is isomorphic to $Z_2timesZ_2$.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2019.117529.1651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $R$ be a ring and $alpha$ be a ring endomorphism of $R$. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set $Z_N(R)^*$, and two distinct vertices $x$ and $y$ are connected by an edge if and only if $xy$ is nilpotent, where $Z_N(R)={xin R;|; xy; rm{is; nilpotent,;for; some}; yin R^*}.$ In this article, we investigate the interplay between the ring theoretical properties of a skew polynomial ring $R[x;alpha]$ and the graph-theoretical properties of its nilpotent graph $Gamma_N(R[x;alpha])$. It is shown that if $R$ is a symmetric and $alpha$-compatible with exactly two minimal primes, then $diam(Gamma_N(R[x,alpha]))=2$. Also we prove that $Gamma_N(R)$ is a complete graph if and only if $R$ is isomorphic to $Z_2timesZ_2$.
非交换环上歪斜多项式环的幂零图
设$R$是环,$alpha$是$R$的环自同态。$R$的无向幂零图,用$Gamma_N(R)$表示,是一个具有顶点集$Z_N(R^*$的图,并且两个不同的顶点$x$和$y$通过边连接当且仅当$xy$是幂零的,其中$Z_Nn(R)={xin R;|;xy;rm{是;幂零,;for;some};阴R^*}.$在本文中,我们研究了偏斜多项式环$R[x;alpha]$的环理论性质与其幂零图$Gamma_N(R[x,alpha])$的图论性质之间的相互作用。证明了如果$R$是对称的并且$alpha$与恰好两个极小素数相容,那么$diam(Gamma_N(R[x,alpha]))=2$。我们还证明了$Gamma_N(R)$是一个完备图,当且仅当$R$同构于$Z_2timesZ_2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信