{"title":"Reducing bias due to misclassified exposures using instrumental variables","authors":"Christopher Manuel, Samiran Sinha, Suojin Wang","doi":"10.1002/cjs.11705","DOIUrl":null,"url":null,"abstract":"<p>Exposures are often misclassified in observational studies. Any analysis that does not make proper adjustments for misclassification may result in biased estimates of model parameters, resulting in distorted inference. Settings where a multicategory exposure variable has more than two nominal categories or where no validation data are available to assess misclassification probabilities are common in practice but seldom considered in the literature. This article presents a novel method of analyzing cohort data with a misclassified, multicategory exposure variable and a binary response variable that uses instrumental variables in lieu of a validation dataset. First, a sufficient condition is obtained for model identifiability. Then, methods for model estimation and inference are proposed after adopting a sufficient condition for identifiability. We consider a variational Bayesian inference procedure aided by automatic differentiation along with Markov chain Monte Carlo-based computation. Operating characteristics of the proposed methods are assessed through simulation studies. For the purpose of illustration, the proposed Bayesian methods are applied to the U.S. breast cancer mortality data sampled from the Surveillance Epidemiology and End Results database, where reported treatment therapy is the misclassified multicategory exposure variable.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11705","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Exposures are often misclassified in observational studies. Any analysis that does not make proper adjustments for misclassification may result in biased estimates of model parameters, resulting in distorted inference. Settings where a multicategory exposure variable has more than two nominal categories or where no validation data are available to assess misclassification probabilities are common in practice but seldom considered in the literature. This article presents a novel method of analyzing cohort data with a misclassified, multicategory exposure variable and a binary response variable that uses instrumental variables in lieu of a validation dataset. First, a sufficient condition is obtained for model identifiability. Then, methods for model estimation and inference are proposed after adopting a sufficient condition for identifiability. We consider a variational Bayesian inference procedure aided by automatic differentiation along with Markov chain Monte Carlo-based computation. Operating characteristics of the proposed methods are assessed through simulation studies. For the purpose of illustration, the proposed Bayesian methods are applied to the U.S. breast cancer mortality data sampled from the Surveillance Epidemiology and End Results database, where reported treatment therapy is the misclassified multicategory exposure variable.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.