Reducing bias due to misclassified exposures using instrumental variables

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Christopher Manuel, Samiran Sinha, Suojin Wang
{"title":"Reducing bias due to misclassified exposures using instrumental variables","authors":"Christopher Manuel,&nbsp;Samiran Sinha,&nbsp;Suojin Wang","doi":"10.1002/cjs.11705","DOIUrl":null,"url":null,"abstract":"<p>Exposures are often misclassified in observational studies. Any analysis that does not make proper adjustments for misclassification may result in biased estimates of model parameters, resulting in distorted inference. Settings where a multicategory exposure variable has more than two nominal categories or where no validation data are available to assess misclassification probabilities are common in practice but seldom considered in the literature. This article presents a novel method of analyzing cohort data with a misclassified, multicategory exposure variable and a binary response variable that uses instrumental variables in lieu of a validation dataset. First, a sufficient condition is obtained for model identifiability. Then, methods for model estimation and inference are proposed after adopting a sufficient condition for identifiability. We consider a variational Bayesian inference procedure aided by automatic differentiation along with Markov chain Monte Carlo-based computation. Operating characteristics of the proposed methods are assessed through simulation studies. For the purpose of illustration, the proposed Bayesian methods are applied to the U.S. breast cancer mortality data sampled from the Surveillance Epidemiology and End Results database, where reported treatment therapy is the misclassified multicategory exposure variable.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11705","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Exposures are often misclassified in observational studies. Any analysis that does not make proper adjustments for misclassification may result in biased estimates of model parameters, resulting in distorted inference. Settings where a multicategory exposure variable has more than two nominal categories or where no validation data are available to assess misclassification probabilities are common in practice but seldom considered in the literature. This article presents a novel method of analyzing cohort data with a misclassified, multicategory exposure variable and a binary response variable that uses instrumental variables in lieu of a validation dataset. First, a sufficient condition is obtained for model identifiability. Then, methods for model estimation and inference are proposed after adopting a sufficient condition for identifiability. We consider a variational Bayesian inference procedure aided by automatic differentiation along with Markov chain Monte Carlo-based computation. Operating characteristics of the proposed methods are assessed through simulation studies. For the purpose of illustration, the proposed Bayesian methods are applied to the U.S. breast cancer mortality data sampled from the Surveillance Epidemiology and End Results database, where reported treatment therapy is the misclassified multicategory exposure variable.

减少由于使用工具变量对暴露进行错误分类而产生的偏差
在观察性研究中,暴露常常被错误地分类。任何没有对错误分类进行适当调整的分析都可能导致模型参数的估计有偏差,从而导致推理失真。多类别暴露变量具有两个以上名义类别或没有可用验证数据来评估误分类概率的设置在实践中很常见,但在文献中很少考虑。本文提出了一种分析队列数据的新方法,该方法使用错误分类,多类别暴露变量和使用工具变量代替验证数据集的二元响应变量。首先,得到了模型可辨识性的充分条件。然后,采用可辨识性的充分条件,提出了模型估计和推理的方法。我们考虑了一个由自动微分辅助的变分贝叶斯推理过程以及基于马尔可夫链的蒙特卡罗计算。通过仿真研究评估了所提出方法的工作特性。为了说明这一点,我们将提出的贝叶斯方法应用于从监测流行病学和最终结果数据库中抽样的美国乳腺癌死亡率数据,其中报告的治疗方法是错误分类的多类别暴露变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics. The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信