Research on collaborative filtering recommendation algorithm based on social network

Q4 Engineering
Tian Zhang
{"title":"Research on collaborative filtering recommendation algorithm based on social network","authors":"Tian Zhang","doi":"10.1504/ijims.2019.103874","DOIUrl":null,"url":null,"abstract":"For users of social-based social networking services, we propose a local random walk-based friend recommendation approach by bringing together social network and tie strength. We firstly construct a weighted friend network as the basis for friend recommendation. Then, users' similarity is determined by a local random walk-based similarity measure on a weighted friend network. Experiments show that we use real social network data to evaluate the new method. The validity of the method is illustrated.","PeriodicalId":39293,"journal":{"name":"International Journal of Internet Manufacturing and Services","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijims.2019.103874","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Internet Manufacturing and Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijims.2019.103874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

For users of social-based social networking services, we propose a local random walk-based friend recommendation approach by bringing together social network and tie strength. We firstly construct a weighted friend network as the basis for friend recommendation. Then, users' similarity is determined by a local random walk-based similarity measure on a weighted friend network. Experiments show that we use real social network data to evaluate the new method. The validity of the method is illustrated.
基于社交网络的协同过滤推荐算法研究
对于基于社交的社交网络服务的用户,我们提出了一种基于本地随机行走的朋友推荐方法,将社交网络和联系强度结合在一起。我们首先构建一个加权朋友网络作为朋友推荐的基础。然后,通过加权朋友网络上基于局部随机行走的相似度度量来确定用户的相似度。实验表明,我们使用真实的社会网络数据来评估新方法。验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Internet Manufacturing and Services
International Journal of Internet Manufacturing and Services Engineering-Industrial and Manufacturing Engineering
CiteScore
0.70
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信