Convex sequences may have thin additive bases

Q4 Mathematics
I. Ruzsa, D. Zhelezov
{"title":"Convex sequences may have thin additive bases","authors":"I. Ruzsa, D. Zhelezov","doi":"10.2140/moscow.2019.8.43","DOIUrl":null,"url":null,"abstract":"For a fixed $c > 0$ we construct an arbitrarily large set $B$ of size $n$ such that its sum set $B+B$ contains a convex sequence of size $cn^2$, answering a question of Hegarty.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/moscow.2019.8.43","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2019.8.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

For a fixed $c > 0$ we construct an arbitrarily large set $B$ of size $n$ such that its sum set $B+B$ contains a convex sequence of size $cn^2$, answering a question of Hegarty.
凸序列可能具有薄的加性基
对于固定的$c>0$,我们构造了一个大小为$n$的任意大集$B$,使得其和集$B+B$包含大小为$cn^2$的凸序列,回答了Hegarty的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信