Analysis of Fuzzy Differential Equation with Fractional Derivative in Caputo Sense

IF 1 4区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Q. Ain, Muhammad Nadeem, Devendra Kumar, M. Shah
{"title":"Analysis of Fuzzy Differential Equation with Fractional Derivative in Caputo Sense","authors":"Q. Ain, Muhammad Nadeem, Devendra Kumar, M. Shah","doi":"10.1155/2023/4009056","DOIUrl":null,"url":null,"abstract":"In this article, the dynamics of the fuzzy fractional order enzyme Michaelis Menten model are investigated. To study problems with uncertainty, fuzzy fractional technique is applied. Using fuzzy theory, the sequential iterations of the model are calculated by applying fractional calculus theory and the homotopy perturbation method. A comparison is given for fractional and fuzzy results, and the numerical findings validate the fuzzy fractional case. Using MATLAB software, the results are simulated for various fractional orders, corresponding to the provided data. The simulations demonstrate the model’s appropriateness.","PeriodicalId":49111,"journal":{"name":"Advances in Mathematical Physics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2023/4009056","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, the dynamics of the fuzzy fractional order enzyme Michaelis Menten model are investigated. To study problems with uncertainty, fuzzy fractional technique is applied. Using fuzzy theory, the sequential iterations of the model are calculated by applying fractional calculus theory and the homotopy perturbation method. A comparison is given for fractional and fuzzy results, and the numerical findings validate the fuzzy fractional case. Using MATLAB software, the results are simulated for various fractional orders, corresponding to the provided data. The simulations demonstrate the model’s appropriateness.
Caputo意义下分数阶导数模糊微分方程的分析
本文研究了模糊分数阶酶Michaelis Menten模型的动力学问题。为了研究具有不确定性的问题,应用模糊分式技术。利用模糊理论,运用分数阶微积分理论和同伦摄动法计算模型的序次迭代。给出了分数和模糊结果的比较,数值结果验证了模糊分数情况的正确性。利用MATLAB软件对各种分数阶的结果进行了仿真,与所提供的数据相对应。仿真结果表明了该模型的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematical Physics
Advances in Mathematical Physics 数学-应用数学
CiteScore
2.40
自引率
8.30%
发文量
151
审稿时长
>12 weeks
期刊介绍: Advances in Mathematical Physics publishes papers that seek to understand mathematical basis of physical phenomena, and solve problems in physics via mathematical approaches. The journal welcomes submissions from mathematical physicists, theoretical physicists, and mathematicians alike. As well as original research, Advances in Mathematical Physics also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信