Unified approach to $C^{1,\alpha}$ regularity for quasilinear parabolic equations

IF 0.6 4区 数学 Q3 MATHEMATICS
K. Adimurthi, Agnid Banerjee
{"title":"Unified approach to $C^{1,\\alpha}$ regularity for quasilinear parabolic equations","authors":"K. Adimurthi, Agnid Banerjee","doi":"10.4171/rlm/990","DOIUrl":null,"url":null,"abstract":"In this paper, we are interested in obtaining a unified approach for $C^{1,\\alpha}$ estimates for weak solutions of quasilinear parabolic equations, the prototype example being \\[ u_t - \\text{div} (|\\nabla u|^{p-2} \\nabla u) = 0. \\] without having to consider the singular and degenerate cases separately. This is achieved via a new scaling and a delicate adaptation of the covering argument developed by E.~DiBenedetto and A.~Friedman. As an application of these techniques, we obtain $C^{1,\\alpha}$ regularity (with sharp assumptions) for two parabolic non-standard growth problems.","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rlm/990","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are interested in obtaining a unified approach for $C^{1,\alpha}$ estimates for weak solutions of quasilinear parabolic equations, the prototype example being \[ u_t - \text{div} (|\nabla u|^{p-2} \nabla u) = 0. \] without having to consider the singular and degenerate cases separately. This is achieved via a new scaling and a delicate adaptation of the covering argument developed by E.~DiBenedetto and A.~Friedman. As an application of these techniques, we obtain $C^{1,\alpha}$ regularity (with sharp assumptions) for two parabolic non-standard growth problems.
拟线性抛物型方程$C^{1,\alpha}$正则性的统一方法
在本文中,我们感兴趣的是获得拟线性抛物方程弱解的$C^{1,\alpha}$估计的统一方法,原型例子是\[u_t-\text{div}(|\nabla u|^{p-2}\nabla u)=0而不必分别考虑奇异和退化情况。这是通过一个新的标度和对E.~DiBenedetto和a.~Friedman提出的覆盖论点的精细调整来实现的。作为这些技术的应用,我们获得了两个抛物型非标准增长问题的$C^{1,\alpha}$正则性(带有尖锐的假设)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rendiconti Lincei-Matematica e Applicazioni
Rendiconti Lincei-Matematica e Applicazioni MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信