High-dimensional sufficient dimension reduction through principal projections

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Eugen Pircalabelu, A. Artemiou
{"title":"High-dimensional sufficient dimension reduction through principal projections","authors":"Eugen Pircalabelu, A. Artemiou","doi":"10.1214/22-ejs1988","DOIUrl":null,"url":null,"abstract":": We develop in this work a new dimension reduction method for high-dimensional settings. The proposed procedure is based on a principal support vector machine framework where principal projections are used in order to overcome the non-invertibility of the covariance matrix. Using a series of equivalences we show that one can accurately recover the central subspace using a projection on a lower dimensional subspace and then applying an (cid:2) 1 penalization strategy to obtain sparse estimators of the sufficient directions. Based next on a desparsified estimator, we provide an inferential procedure for high-dimensional models that allows testing for the importance of variables in determining the sufficient direction. Theoretical properties of the methodology are illustrated and computational advantages are demonstrated with simulated and real data experiments.","PeriodicalId":49272,"journal":{"name":"Electronic Journal of Statistics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ejs1988","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

: We develop in this work a new dimension reduction method for high-dimensional settings. The proposed procedure is based on a principal support vector machine framework where principal projections are used in order to overcome the non-invertibility of the covariance matrix. Using a series of equivalences we show that one can accurately recover the central subspace using a projection on a lower dimensional subspace and then applying an (cid:2) 1 penalization strategy to obtain sparse estimators of the sufficient directions. Based next on a desparsified estimator, we provide an inferential procedure for high-dimensional models that allows testing for the importance of variables in determining the sufficient direction. Theoretical properties of the methodology are illustrated and computational advantages are demonstrated with simulated and real data experiments.
通过主投影进行高维充分降维
在这项工作中,我们开发了一种新的高维设置降维方法。提出的过程是基于主支持向量机框架,其中主投影用于克服协方差矩阵的不可逆转性。利用一系列等价证明了在低维子空间上使用投影可以精确地恢复中心子空间,然后应用(cid:2) 1惩罚策略来获得充分方向的稀疏估计。接下来,基于一个离散估计量,我们为高维模型提供了一个推理过程,该过程允许测试变量在确定足够方向中的重要性。通过模拟和实际数据实验,说明了该方法的理论特性,并证明了其计算优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Statistics
Electronic Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
9.10%
发文量
100
审稿时长
3 months
期刊介绍: The Electronic Journal of Statistics (EJS) publishes research articles and short notes on theoretical, computational and applied statistics. The journal is open access. Articles are refereed and are held to the same standard as articles in other IMS journals. Articles become publicly available shortly after they are accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信