{"title":"Sinusoidally architected helicoidal composites inspired by the dactyl club of mantis shrimp","authors":"Ruiheng Yang, Huitian Wang, Bing Wang, Sheng Zhang, Zhiping Huang, Shan Yin","doi":"10.1080/19475411.2023.2236572","DOIUrl":null,"url":null,"abstract":"ABSTRACT The impact region of the dactyl club of mantis shrimp features a rare sinusoidally helicoidal architecture, contributing to its efficient impact-resistant characteristics. This study aims to attain bioinspired sinusoidally architected composites from a practical engineering way. Morphological features of plain-woven fabric were characterized, which demonstrated that the interweaving warp and weft yarns exhibited a sinusoidal architecture. Interconnected woven composites were thus employed and helicoidally stacked to achieve the desired structure. Quasi-static three-point bending and low-velocity impact tests were subsequently performed to evaluate their mechanical performance. Under three-point bending condition, the dominant failure mode gradually changed from fiber breakage to delamination with the increase in the pitch angle. Failure displacement and energy absorption of the helicoidal woven composites were, respectively, 43.89% and 141.90% greater than the unidirectional ones. Under low-velocity impact condition, the damage area of the helicoidal woven composites decreased by 49.66% while the residual strength increased by 10.10% compared with those of the unidirectional ones, exhibiting better damage resistance and tolerance. Also, effects of fiber architecture on mechanical properties were examined. This work will shed light on future design of the next-generation impact-resistant architected composites. GRAPHICAL ABSTRACT","PeriodicalId":48516,"journal":{"name":"International Journal of Smart and Nano Materials","volume":"14 1","pages":"321 - 336"},"PeriodicalIF":4.5000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart and Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/19475411.2023.2236572","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The impact region of the dactyl club of mantis shrimp features a rare sinusoidally helicoidal architecture, contributing to its efficient impact-resistant characteristics. This study aims to attain bioinspired sinusoidally architected composites from a practical engineering way. Morphological features of plain-woven fabric were characterized, which demonstrated that the interweaving warp and weft yarns exhibited a sinusoidal architecture. Interconnected woven composites were thus employed and helicoidally stacked to achieve the desired structure. Quasi-static three-point bending and low-velocity impact tests were subsequently performed to evaluate their mechanical performance. Under three-point bending condition, the dominant failure mode gradually changed from fiber breakage to delamination with the increase in the pitch angle. Failure displacement and energy absorption of the helicoidal woven composites were, respectively, 43.89% and 141.90% greater than the unidirectional ones. Under low-velocity impact condition, the damage area of the helicoidal woven composites decreased by 49.66% while the residual strength increased by 10.10% compared with those of the unidirectional ones, exhibiting better damage resistance and tolerance. Also, effects of fiber architecture on mechanical properties were examined. This work will shed light on future design of the next-generation impact-resistant architected composites. GRAPHICAL ABSTRACT
期刊介绍:
The central aim of International Journal of Smart and Nano Materials is to publish original results, critical reviews, technical discussion, and book reviews related to this compelling research field: smart and nano materials, and their applications. The papers published in this journal will provide cutting edge information and instructive research guidance, encouraging more scientists to make their contribution to this dynamic research field.