{"title":"Mathematical analysis of non-Newtonian nanofluid transport phenomena past a truncated cone with Newtonian heating","authors":"Nagendra Nallagundla, Ch. Amanulla, M. Reddy","doi":"10.3329/JNAME.V15I1.29966","DOIUrl":null,"url":null,"abstract":"In the present study, we analyze the heat, momentum and mass (species) transfer in external boundary layer flow of Casson nanofluid past a truncated cone surface with Biot Number effect is studied theoretically. The effects of Brownian motion and thermophoresis are incorporated in the model in the presence of both heat and nanoparticle mass transfer Biot Number effect. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial differential equations consisting of the momentum, energy and concentration equations via. Appropriate non-similarity transformations. These transformed conservation equations are solved subject to appropriate boundary conditions with a second order accurate finite difference method of the implicit type. The influences of the emerging parameters i.e. Casson fluid parameter (?), Brownian motion parameter (Nb) and thermophoresis parameter (Nt), Lewis number (Le), Buoyancy ratio parameter (N ), Prandtl number (Pr) and Biot number (Bi) on velocity, temperature and nano-particle concentration distributions is illustrated graphically and interpreted at length. Validation of solutions with a Nakamura tri-diagonal method has been included. The study is relevant to enrobing processes for electric-conductive nano-materials of potential use in aerospace and other industries.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3329/JNAME.V15I1.29966","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/JNAME.V15I1.29966","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12
Abstract
In the present study, we analyze the heat, momentum and mass (species) transfer in external boundary layer flow of Casson nanofluid past a truncated cone surface with Biot Number effect is studied theoretically. The effects of Brownian motion and thermophoresis are incorporated in the model in the presence of both heat and nanoparticle mass transfer Biot Number effect. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial differential equations consisting of the momentum, energy and concentration equations via. Appropriate non-similarity transformations. These transformed conservation equations are solved subject to appropriate boundary conditions with a second order accurate finite difference method of the implicit type. The influences of the emerging parameters i.e. Casson fluid parameter (?), Brownian motion parameter (Nb) and thermophoresis parameter (Nt), Lewis number (Le), Buoyancy ratio parameter (N ), Prandtl number (Pr) and Biot number (Bi) on velocity, temperature and nano-particle concentration distributions is illustrated graphically and interpreted at length. Validation of solutions with a Nakamura tri-diagonal method has been included. The study is relevant to enrobing processes for electric-conductive nano-materials of potential use in aerospace and other industries.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.