Toward a sociology of machine learning explainability: Human–machine interaction in deep neural network-based automated trading

IF 6.5 1区 社会学 Q1 SOCIAL SCIENCES, INTERDISCIPLINARY
C. Borch, Bo Hee Min
{"title":"Toward a sociology of machine learning explainability: Human–machine interaction in deep neural network-based automated trading","authors":"C. Borch, Bo Hee Min","doi":"10.1177/20539517221111361","DOIUrl":null,"url":null,"abstract":"Machine learning systems are making considerable inroads in society owing to their ability to recognize and predict patterns. However, the decision-making logic of some widely used machine learning models, such as deep neural networks, is characterized by opacity, thereby rendering them exceedingly difficult for humans to understand and explain and, as a result, potentially risky to use. Considering the importance of addressing this opacity, this paper calls for research that studies empirically and theoretically how machine learning experts and users seek to attain machine learning explainability. Focusing on automated trading, we take steps in this direction by analyzing a trading firm’s quest for explaining its deep neural network system’s actionable predictions. We demonstrate that this explainability effort involves a particular form of human–machine interaction that contains both anthropomorphic and technomorphic elements. We discuss this attempt to attain machine learning explainability in light of reflections on cross-species companionship and consider it an example of human–machine companionship.","PeriodicalId":47834,"journal":{"name":"Big Data & Society","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data & Society","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1177/20539517221111361","RegionNum":1,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL SCIENCES, INTERDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

Abstract

Machine learning systems are making considerable inroads in society owing to their ability to recognize and predict patterns. However, the decision-making logic of some widely used machine learning models, such as deep neural networks, is characterized by opacity, thereby rendering them exceedingly difficult for humans to understand and explain and, as a result, potentially risky to use. Considering the importance of addressing this opacity, this paper calls for research that studies empirically and theoretically how machine learning experts and users seek to attain machine learning explainability. Focusing on automated trading, we take steps in this direction by analyzing a trading firm’s quest for explaining its deep neural network system’s actionable predictions. We demonstrate that this explainability effort involves a particular form of human–machine interaction that contains both anthropomorphic and technomorphic elements. We discuss this attempt to attain machine learning explainability in light of reflections on cross-species companionship and consider it an example of human–machine companionship.
走向机器学习的社会学解释:基于深度神经网络的自动交易中的人机交互
机器学习系统由于其识别和预测模式的能力而在社会上取得了长足的进步。然而,一些广泛使用的机器学习模型(如深度神经网络)的决策逻辑具有不透明性,从而使人类极难理解和解释这些模型,因此使用起来可能有风险。考虑到解决这种不透明性的重要性,本文呼吁进行实证和理论研究,研究机器学习专家和用户如何寻求获得机器学习的可解释性。专注于自动化交易,我们通过分析贸易公司对解释其深度神经网络系统可操作预测的追求,朝着这个方向迈出了一步。我们证明,这种可解释性的努力涉及一种特殊形式的人机交互,它包含拟人化和技术形态元素。我们根据对跨物种陪伴的反思,讨论了这种实现机器学习可解释性的尝试,并将其视为人机陪伴的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Big Data & Society
Big Data & Society SOCIAL SCIENCES, INTERDISCIPLINARY-
CiteScore
10.90
自引率
10.60%
发文量
59
审稿时长
11 weeks
期刊介绍: Big Data & Society (BD&S) is an open access, peer-reviewed scholarly journal that publishes interdisciplinary work principally in the social sciences, humanities, and computing and their intersections with the arts and natural sciences. The journal focuses on the implications of Big Data for societies and aims to connect debates about Big Data practices and their effects on various sectors such as academia, social life, industry, business, and government. BD&S considers Big Data as an emerging field of practices, not solely defined by but generative of unique data qualities such as high volume, granularity, data linking, and mining. The journal pays attention to digital content generated both online and offline, encompassing social media, search engines, closed networks (e.g., commercial or government transactions), and open networks like digital archives, open government, and crowdsourced data. Rather than providing a fixed definition of Big Data, BD&S encourages interdisciplinary inquiries, debates, and studies on various topics and themes related to Big Data practices. BD&S seeks contributions that analyze Big Data practices, involve empirical engagements and experiments with innovative methods, and reflect on the consequences of these practices for the representation, realization, and governance of societies. As a digital-only journal, BD&S's platform can accommodate multimedia formats such as complex images, dynamic visualizations, videos, and audio content. The contents of the journal encompass peer-reviewed research articles, colloquia, bookcasts, think pieces, state-of-the-art methods, and work by early career researchers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信