The inequalities on dual numbers and their topological structures

IF 0.8 4区 数学 Q2 MATHEMATICS
Buşra Aktaş, Olgun Durmaz, Halit Gündoğan
{"title":"The inequalities on dual numbers and their topological structures","authors":"Buşra Aktaş, Olgun Durmaz, Halit Gündoğan","doi":"10.55730/1300-0098.3431","DOIUrl":null,"url":null,"abstract":": Inequalities are frequently used in various fields of mathematics to prove theorems. The existence of inequalities contributes significantly to the foundations of such branches. In this paper, we study the properties of order relations in the system of dual numbers, which is inspired by order relations defined on real numbers. Besides, some special inequalities that are used in various fields of mathematics, such as Cauchy-Schwarz, Minkowski, and Chebyshev are studied in this framework. An example is also provided to validate our research findings","PeriodicalId":51206,"journal":{"name":"Turkish Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.55730/1300-0098.3431","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

: Inequalities are frequently used in various fields of mathematics to prove theorems. The existence of inequalities contributes significantly to the foundations of such branches. In this paper, we study the properties of order relations in the system of dual numbers, which is inspired by order relations defined on real numbers. Besides, some special inequalities that are used in various fields of mathematics, such as Cauchy-Schwarz, Minkowski, and Chebyshev are studied in this framework. An example is also provided to validate our research findings
对偶数的不等式及其拓扑结构
在数学的各个领域中,不等式经常被用来证明定理。不平等的存在极大地促进了这些分支的基础。在实数上定义的序关系的启发下,研究了对偶数系统中序关系的性质。此外,本文还研究了一些在数学各个领域中使用的特殊不等式,如Cauchy-Schwarz, Minkowski和Chebyshev。最后通过实例验证了本文的研究结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
10.00%
发文量
161
审稿时长
6-12 weeks
期刊介绍: The Turkish Journal of Mathematics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language original research manuscripts in the field of mathematics. Contribution is open to researchers of all nationalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信