{"title":"Mandatory lane-changing modelling based on a game theoretic approach in traditional and connected environments","authors":"G. Cheng, Qiuyue Sun, Y. Bie","doi":"10.1093/tse/tdac035","DOIUrl":null,"url":null,"abstract":"\n The paper proposes a model of mandatory lane-changing behaviour based on a non-cooperative game in a traditional environment and analyses its applicability in a connected environment. In order to solve the problem of traffic safety and traffic congestion caused by mandatory lane-changing on urban roads, this paper applies the non-cooperative game theory to describe the game behaviour of the two parties, the lane-changing vehicle and the vehicle behind the target lane, in the connected and traditional environments respectively, and constructs the model considering the safety gain, speed gain and lane-changing gain to obtain a game model and the Nash equilibrium solution. The model is calibrated and tested using NGSIM data, and the results of the study show that the model has a good performance for the decision behaviour of lane-changing vehicles and lag vehicles for mandatory lane-changing behaviour on urban roads.","PeriodicalId":52804,"journal":{"name":"Transportation Safety and Environment","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Safety and Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/tse/tdac035","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The paper proposes a model of mandatory lane-changing behaviour based on a non-cooperative game in a traditional environment and analyses its applicability in a connected environment. In order to solve the problem of traffic safety and traffic congestion caused by mandatory lane-changing on urban roads, this paper applies the non-cooperative game theory to describe the game behaviour of the two parties, the lane-changing vehicle and the vehicle behind the target lane, in the connected and traditional environments respectively, and constructs the model considering the safety gain, speed gain and lane-changing gain to obtain a game model and the Nash equilibrium solution. The model is calibrated and tested using NGSIM data, and the results of the study show that the model has a good performance for the decision behaviour of lane-changing vehicles and lag vehicles for mandatory lane-changing behaviour on urban roads.