On the generalized parabolic Hardy-Hénon equation: Existence, blow-up, self-similarity and large-time asymptotic behavior

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Gael Diebou Yomgne
{"title":"On the generalized parabolic Hardy-Hénon equation: Existence, blow-up, self-similarity and large-time asymptotic behavior","authors":"Gael Diebou Yomgne","doi":"10.57262/die035-0102-57","DOIUrl":null,"url":null,"abstract":"This paper deals with the Cauchy problem for the Hardy-Hénon equation (and its fractional analogue). Local well-posedness for initial data in the class of continuous functions with slow decay at infinity is investigated. Small data (in critical weak-Lebesgue space) global well-posedness is obtained in Cb([0,∞); L c(R)). As a direct consequence, global existence for data in strong critical Lebesgue Lc (R) follows under a smallness condition while uniqueness is unconditional. Besides, we prove the existence of self-similar solutions and examine the long time behavior of globally defined solutions. The zero solution u ≡ 0 is shown to be asymptotically stable in Lc (R) – it is the only self-similar solution which is initially small in Lc (R). Moreover, blow-up results are obtained under mild assumptions on the initial data and the corresponding Fujita critical exponent is found.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die035-0102-57","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

This paper deals with the Cauchy problem for the Hardy-Hénon equation (and its fractional analogue). Local well-posedness for initial data in the class of continuous functions with slow decay at infinity is investigated. Small data (in critical weak-Lebesgue space) global well-posedness is obtained in Cb([0,∞); L c(R)). As a direct consequence, global existence for data in strong critical Lebesgue Lc (R) follows under a smallness condition while uniqueness is unconditional. Besides, we prove the existence of self-similar solutions and examine the long time behavior of globally defined solutions. The zero solution u ≡ 0 is shown to be asymptotically stable in Lc (R) – it is the only self-similar solution which is initially small in Lc (R). Moreover, blow-up results are obtained under mild assumptions on the initial data and the corresponding Fujita critical exponent is found.
广义抛物型hardy - hsamnon方程的存在性、爆破性、自相似性和大时渐近性
本文讨论了hardy - hsamnon方程的柯西问题(及其分数阶类比)。研究了一类在无穷远处缓慢衰减的连续函数的初始数据的局部适定性。在Cb([0,∞)上得到了小数据(临界弱- lebesgue空间)的全局适定性;L c (R))。其直接结果是,强临界Lebesgue Lc (R)中的数据在一个小条件下具有全局存在性,而唯一性是无条件的。此外,我们证明了自相似解的存在性,并检验了全局定义解的长时间行为。证明了零解u≡0在Lc (R)中是渐近稳定的——它是Lc (R)中唯一初始较小的自相似解。此外,在初始数据的温和假设下得到了爆破结果,并找到了相应的Fujita临界指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信