High-dimensional asymptotic distributions of characteristic roots in multivariate linear models and canonical correlation analysis

IF 0.5 4区 数学 Q3 MATHEMATICS
Y. Fujikoshi
{"title":"High-dimensional asymptotic distributions of characteristic roots in multivariate linear models and canonical correlation analysis","authors":"Y. Fujikoshi","doi":"10.32917/HMJ/1509674447","DOIUrl":null,"url":null,"abstract":"In this paper, we derive the asymptotic distributions of the characteristic roots in multivariate linear models when the dimension p and the sample size n are large. The results are given for the case that the population characteristic roots have multiplicities greater than unity, and their orders are O(np) or O(n). Next, similar results are given for the asymptotic distributions of the canonical correlations when one of the dimensions and the sample size are large, assuming that the order of the population canonical correlations is O( √ p) or O(1). AMS 2000 Subject Classification: primary 62H10; secondary 62E20","PeriodicalId":55054,"journal":{"name":"Hiroshima Mathematical Journal","volume":"47 1","pages":"249-271"},"PeriodicalIF":0.5000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hiroshima Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/HMJ/1509674447","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we derive the asymptotic distributions of the characteristic roots in multivariate linear models when the dimension p and the sample size n are large. The results are given for the case that the population characteristic roots have multiplicities greater than unity, and their orders are O(np) or O(n). Next, similar results are given for the asymptotic distributions of the canonical correlations when one of the dimensions and the sample size are large, assuming that the order of the population canonical correlations is O( √ p) or O(1). AMS 2000 Subject Classification: primary 62H10; secondary 62E20
多元线性模型特征根的高维渐近分布及典型相关分析
本文导出了多元线性模型在维数p和样本量n较大时特征根的渐近分布。给出了种群特征根的多重度大于1,阶数为O(np)或O(n)的结果。接下来,假设总体典型相关的阶数为O(√p)或O(1),当其中一个维度和样本量较大时,给出了典型相关的渐近分布的类似结果。AMS 2000学科分类:初级62H10;二次62 e20
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: Hiroshima Mathematical Journal (HMJ) is a continuation of Journal of Science of the Hiroshima University, Series A, Vol. 1 - 24 (1930 - 1960), and Journal of Science of the Hiroshima University, Series A - I , Vol. 25 - 34 (1961 - 1970). Starting with Volume 4 (1974), each volume of HMJ consists of three numbers annually. This journal publishes original papers in pure and applied mathematics. HMJ is an (electronically) open access journal from Volume 36, Number 1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信