Sharp Growth Estimates for Warping Functions in Multiply Warped Product Manifolds

Pub Date : 2018-09-15 DOI:10.7546/JGSP-52-2019-27-46
Bang‐Yen Chen, S. Wei
{"title":"Sharp Growth Estimates for Warping Functions in Multiply Warped Product Manifolds","authors":"Bang‐Yen Chen, S. Wei","doi":"10.7546/JGSP-52-2019-27-46","DOIUrl":null,"url":null,"abstract":"By applying an average method in PDE, we obtain a dichotomy between \"constancy\" and \"infinity\" of the warping functions on complete noncompact Riemannian manifolds for an appropriate isometric immersion of a multiply warped product manifold $N_1\\times_{f_2} N_2 \\times \\cdots \\times _{f_k} N_k\\, $ into a Riemannian manifold. Generalizing the earlier work of the authors in [{Glasg. Math. J. 51 (2009) 579-592], we establish sharp inequalities between the mean curvature of the immersion and the sectional curvatures of the ambient manifold under the influence of quantities of a purely analytic nature (the growth of the warping functions). Several applications of our growth estimates are also presented.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/JGSP-52-2019-27-46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

By applying an average method in PDE, we obtain a dichotomy between "constancy" and "infinity" of the warping functions on complete noncompact Riemannian manifolds for an appropriate isometric immersion of a multiply warped product manifold $N_1\times_{f_2} N_2 \times \cdots \times _{f_k} N_k\, $ into a Riemannian manifold. Generalizing the earlier work of the authors in [{Glasg. Math. J. 51 (2009) 579-592], we establish sharp inequalities between the mean curvature of the immersion and the sectional curvatures of the ambient manifold under the influence of quantities of a purely analytic nature (the growth of the warping functions). Several applications of our growth estimates are also presented.
分享
查看原文
多重Warped乘积流形中Warping函数的Sharp Growth估计
通过在PDE中应用平均方法,我们得到了完全非紧黎曼流形上的翘曲函数的“恒定性”和“无穷大”之间的二分法,用于乘积翘曲乘积流形$N_1\times_{f_2}N_2\times\cdots\times_{f _k}N_k\,$到黎曼流形的适当等距浸入。推广作者在〔{Glasg.Math.J.51(2009)579-592〕中的早期工作,我们在纯分析性质的量(翘曲函数的增长)的影响下,在浸入的平均曲率和环境流形的截面曲率之间建立了尖锐的不等式。还介绍了我们的增长估计的几个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信