A new construction of anticode-optimal Grassmannian codes

Q3 Mathematics
Ben Paul Bautista Dela Cruz, J. M. Lampos, H. S. Palines, V. Sison
{"title":"A new construction of anticode-optimal Grassmannian codes","authors":"Ben Paul Bautista Dela Cruz, J. M. Lampos, H. S. Palines, V. Sison","doi":"10.13069/JACODESMATH.858732","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the well-known unital embedding from $\\FF_{q^k}$ into $M_k(\\FF_q)$ seen as a map of vector spaces over $\\FF_q$ and apply this map in a linear block code of rate $\\rho/\\ell$ over $\\FF_{q^k}$. This natural extension gives rise to a rank-metric code with $k$ rows, $k\\ell$ columns, dimension $\\rho$ and minimum distance $k$ that satisfies the Singleton bound. Given a specific skeleton code, this rank-metric code can be seen as a Ferrers diagram rank-metric code by appending zeros on the left side so that it has length $n-k$. The generalized lift of this Ferrers diagram rank-metric code is a Grassmannian code. By taking the union of a family of the generalized lift of Ferrers diagram rank-metric codes, a Grassmannian code with length $n$, cardinality $\\frac{q^n-1}{q^k-1}$, minimum injection distance $k$ and dimension $k$ that satisfies the anticode upper bound can be constructed.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/JACODESMATH.858732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we consider the well-known unital embedding from $\FF_{q^k}$ into $M_k(\FF_q)$ seen as a map of vector spaces over $\FF_q$ and apply this map in a linear block code of rate $\rho/\ell$ over $\FF_{q^k}$. This natural extension gives rise to a rank-metric code with $k$ rows, $k\ell$ columns, dimension $\rho$ and minimum distance $k$ that satisfies the Singleton bound. Given a specific skeleton code, this rank-metric code can be seen as a Ferrers diagram rank-metric code by appending zeros on the left side so that it has length $n-k$. The generalized lift of this Ferrers diagram rank-metric code is a Grassmannian code. By taking the union of a family of the generalized lift of Ferrers diagram rank-metric codes, a Grassmannian code with length $n$, cardinality $\frac{q^n-1}{q^k-1}$, minimum injection distance $k$ and dimension $k$ that satisfies the anticode upper bound can be constructed.
反码最优Grassmann码的一种新构造
在本文中,我们将众所周知的从$\FF_{q^k}$到$M_k(\FF_q)$的单位嵌入视为$\FF_q$上的向量空间映射,并将该映射应用于率为$\rho/\ell$ / $\FF_{q^k}$的线性块码中。这种自然扩展产生了具有$k$行、$k\ell$列、维度$\rho$和满足Singleton边界的最小距离$k$的秩-度量代码。给定一个特定的骨架代码,这个等级-度量代码可以通过在左边附加零来看作一个Ferrers图等级-度量代码,这样它的长度为$n-k$。该费雷尔斯图等级-度量码的广义升力是格拉斯曼码。利用ferers图秩-度量码的广义升力族的并集,构造出长度为$n$、基数为$\frac{q^n-1}{q^k-1}$、最小注入距离为$k$、维数为$k$且满足反码上界的Grassmannian码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
12
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信