Ben Paul Bautista Dela Cruz, J. M. Lampos, H. S. Palines, V. Sison
{"title":"A new construction of anticode-optimal Grassmannian codes","authors":"Ben Paul Bautista Dela Cruz, J. M. Lampos, H. S. Palines, V. Sison","doi":"10.13069/JACODESMATH.858732","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the well-known unital embedding from $\\FF_{q^k}$ into $M_k(\\FF_q)$ seen as a map of vector spaces over $\\FF_q$ and apply this map in a linear block code of rate $\\rho/\\ell$ over $\\FF_{q^k}$. This natural extension gives rise to a rank-metric code with $k$ rows, $k\\ell$ columns, dimension $\\rho$ and minimum distance $k$ that satisfies the Singleton bound. Given a specific skeleton code, this rank-metric code can be seen as a Ferrers diagram rank-metric code by appending zeros on the left side so that it has length $n-k$. The generalized lift of this Ferrers diagram rank-metric code is a Grassmannian code. By taking the union of a family of the generalized lift of Ferrers diagram rank-metric codes, a Grassmannian code with length $n$, cardinality $\\frac{q^n-1}{q^k-1}$, minimum injection distance $k$ and dimension $k$ that satisfies the anticode upper bound can be constructed.","PeriodicalId":37029,"journal":{"name":"Journal of Algebra Combinatorics Discrete Structures and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra Combinatorics Discrete Structures and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13069/JACODESMATH.858732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we consider the well-known unital embedding from $\FF_{q^k}$ into $M_k(\FF_q)$ seen as a map of vector spaces over $\FF_q$ and apply this map in a linear block code of rate $\rho/\ell$ over $\FF_{q^k}$. This natural extension gives rise to a rank-metric code with $k$ rows, $k\ell$ columns, dimension $\rho$ and minimum distance $k$ that satisfies the Singleton bound. Given a specific skeleton code, this rank-metric code can be seen as a Ferrers diagram rank-metric code by appending zeros on the left side so that it has length $n-k$. The generalized lift of this Ferrers diagram rank-metric code is a Grassmannian code. By taking the union of a family of the generalized lift of Ferrers diagram rank-metric codes, a Grassmannian code with length $n$, cardinality $\frac{q^n-1}{q^k-1}$, minimum injection distance $k$ and dimension $k$ that satisfies the anticode upper bound can be constructed.