{"title":"Level compatibility in Sharifi’s conjecture","authors":"E. Lecouturier, Jun Wang","doi":"10.4153/s0008439523000267","DOIUrl":null,"url":null,"abstract":"Sharifi has constructed a map from the first homology of the modular curve $X_1(M)$ to the $K$-group $K_2(\\mathbf{Z}[\\zeta_M, \\frac{1}{M}])$, where $\\zeta_M$ is a primitive $M$th root of unity. We study how these maps relate when $M$ varies. Our method relies on the techniques developed by Sharifi and Venkatesh.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/s0008439523000267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Sharifi has constructed a map from the first homology of the modular curve $X_1(M)$ to the $K$-group $K_2(\mathbf{Z}[\zeta_M, \frac{1}{M}])$, where $\zeta_M$ is a primitive $M$th root of unity. We study how these maps relate when $M$ varies. Our method relies on the techniques developed by Sharifi and Venkatesh.