Optimal bandwidth selection for recursive Gumbel kernel density estimators

IF 0.6 Q4 STATISTICS & PROBABILITY
Y. Slaoui
{"title":"Optimal bandwidth selection for recursive Gumbel kernel density estimators","authors":"Y. Slaoui","doi":"10.1515/demo-2019-0020","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we propose a data driven bandwidth selection of the recursive Gumbel kernel estimators of a probability density function based on a stochastic approximation algorithm. The choice of the bandwidth selection approaches is investigated by a second generation plug-in method. Convergence properties of the proposed recursive Gumbel kernel estimators are established. The uniform strong consistency of the proposed recursive Gumbel kernel estimators is derived. The new recursive Gumbel kernel estimators are compared to the non-recursive Gumbel kernel estimator and the performance of the two estimators are illustrated via simulations as well as a real application.","PeriodicalId":43690,"journal":{"name":"Dependence Modeling","volume":"7 1","pages":"375 - 393"},"PeriodicalIF":0.6000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/demo-2019-0020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dependence Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/demo-2019-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we propose a data driven bandwidth selection of the recursive Gumbel kernel estimators of a probability density function based on a stochastic approximation algorithm. The choice of the bandwidth selection approaches is investigated by a second generation plug-in method. Convergence properties of the proposed recursive Gumbel kernel estimators are established. The uniform strong consistency of the proposed recursive Gumbel kernel estimators is derived. The new recursive Gumbel kernel estimators are compared to the non-recursive Gumbel kernel estimator and the performance of the two estimators are illustrated via simulations as well as a real application.
递归Gumbel核密度估计的最优带宽选择
本文提出了一种基于随机逼近算法的概率密度函数递推Gumbel核估计的数据驱动带宽选择方法。采用第二代插件法研究了带宽选择方法的选择。建立了所提出的递归Gumbel核估计的收敛性。给出了所提出的递推Gumbel核估计量的一致强相合性。将新的递归Gumbel核估计器与非递归Gumbel核估计器进行了比较,并通过仿真和实际应用说明了两种估计器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Dependence Modeling
Dependence Modeling STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
18
审稿时长
12 weeks
期刊介绍: The journal Dependence Modeling aims at providing a medium for exchanging results and ideas in the area of multivariate dependence modeling. It is an open access fully peer-reviewed journal providing the readers with free, instant, and permanent access to all content worldwide. Dependence Modeling is listed by Web of Science (Emerging Sources Citation Index), Scopus, MathSciNet and Zentralblatt Math. The journal presents different types of articles: -"Research Articles" on fundamental theoretical aspects, as well as on significant applications in science, engineering, economics, finance, insurance and other fields. -"Review Articles" which present the existing literature on the specific topic from new perspectives. -"Interview articles" limited to two papers per year, covering interviews with milestone personalities in the field of Dependence Modeling. The journal topics include (but are not limited to):  -Copula methods -Multivariate distributions -Estimation and goodness-of-fit tests -Measures of association -Quantitative risk management -Risk measures and stochastic orders -Time series -Environmental sciences -Computational methods and software -Extreme-value theory -Limit laws -Mass Transportations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信