$G$-Weights and $p$-Local Rank

Q4 Mathematics
P. D. Wade
{"title":"$G$-Weights and $p$-Local Rank","authors":"P. D. Wade","doi":"10.22124/JART.2017.2711","DOIUrl":null,"url":null,"abstract":"Let $k$ be field of characteristic $p$, andlet $G$ be any finite group with splitting field $k$. Assume that $B$ is a $p$-block of $G$.In this paper, we introduce the notion of radical $B$-chain $C_{B}$, and we show that the $p$-local rank of $B$ is equals the length of $C_{B}$. Moreover, we prove that the vertex of a simple $kG$-module $S$ is radical if and only if it has the same vertex of the unique direct summand, up to isomorphism, of the Sylow permutationmodule whose radical quotient is isomorphic to $S$. Finally, we prove the vertices of certain direct summands of the Sylow permutation module are bounds for the vertices of simple $kG$-modules.","PeriodicalId":52302,"journal":{"name":"Journal of Algebra and Related Topics","volume":"5 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22124/JART.2017.2711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let $k$ be field of characteristic $p$, andlet $G$ be any finite group with splitting field $k$. Assume that $B$ is a $p$-block of $G$.In this paper, we introduce the notion of radical $B$-chain $C_{B}$, and we show that the $p$-local rank of $B$ is equals the length of $C_{B}$. Moreover, we prove that the vertex of a simple $kG$-module $S$ is radical if and only if it has the same vertex of the unique direct summand, up to isomorphism, of the Sylow permutationmodule whose radical quotient is isomorphic to $S$. Finally, we prove the vertices of certain direct summands of the Sylow permutation module are bounds for the vertices of simple $kG$-modules.
$G$-权重和$p$-本地排名
设$k$是特征$p$的域,设$G$是具有分裂域$k$的任意有限群。假设$B$是$G$的$p$块。本文引入根式$B$-链$C_{B}$的概念,证明了$B$的$p$-局部秩等于$C_{B}$的长度。此外,我们证明了一个简单的$kG$-模$S$的顶点是根当且仅当它与根商与$S$同构的Sylow置换模的唯一直和的顶点相同。最后,我们证明了Sylow置换模的某些直接和的顶点是简单$kG$-模的顶点的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra and Related Topics
Journal of Algebra and Related Topics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信