Sobolev-type regularity and Pohozaev-type identities for some degenerate and singular problems

IF 0.6 4区 数学 Q3 MATHEMATICS
V. Felli, Giovanni Siclari
{"title":"Sobolev-type regularity and Pohozaev-type identities for some degenerate and singular problems","authors":"V. Felli, Giovanni Siclari","doi":"10.4171/rlm/980","DOIUrl":null,"url":null,"abstract":"on the bottom of a half (N + 1)-dimensional ball. The interest in such a type of equations and related regularity issues has developed starting from the pioneering paper [7], proving local Hölder continuity results and Harnack’s inequalities, and has grown significantly in recent years stimulated by the study of the fractional Laplacian in its realization as a Dirichlet-to-Neumann map [3]. In this context, among recent regularity results for problems of type (1)–(2), we mention [2] and [12] for Schauder and gradient estimates with A being the identity matrix and c ≡ 0. More general degenerate/singular equations of type (1), admitting a varying coefficient matrix A, are considered in [19, 20]. In [19], under suitable regularity assumptions on A and c, Hölder continuity and C-regularity are established for solutions to (1)–(2) in the case h ≡ g ≡ 0, which, up to a reflection through the hyperspace t = 0, corresponds to the study of solutions to the equation − div(|t|1−2sA∇U) + |t|1−2sc = 0 which are even with respect to the t-variable; Hölder continuity of solutions which are odd in t is instead investigated in [20]. In addition, in [19] C and C bounds are derived for some inhomogeneous Neumann boundary problems (i.e. for g 6≡ 0) in the case c ≡ 0. The goal of the present note is to derive Sobolev-type regularity results for solutions to (1)–(2). Under suitable assumptions on c, h, g, the presence of the singular/degenerate homogenous weight, involving only the (N +1)-th variable t, makes the solutions to have derivates with respect to the first N variables x1, x2, . . . , xN belonging to a weighted H -space (with the same weight t1−2s); concerning the regularity of the derivative with respect to t, we obtain instead that the weighted derivative t1−2s ∂U ∂t belongs to a H-space with the dual weight t2s−1, confirming what has already been observed in [19, Lemma 7.1] for even solutions of the reflected problem corresponding to (1)–(2) with h ≡ g ≡ 0.","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/rlm/980","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

on the bottom of a half (N + 1)-dimensional ball. The interest in such a type of equations and related regularity issues has developed starting from the pioneering paper [7], proving local Hölder continuity results and Harnack’s inequalities, and has grown significantly in recent years stimulated by the study of the fractional Laplacian in its realization as a Dirichlet-to-Neumann map [3]. In this context, among recent regularity results for problems of type (1)–(2), we mention [2] and [12] for Schauder and gradient estimates with A being the identity matrix and c ≡ 0. More general degenerate/singular equations of type (1), admitting a varying coefficient matrix A, are considered in [19, 20]. In [19], under suitable regularity assumptions on A and c, Hölder continuity and C-regularity are established for solutions to (1)–(2) in the case h ≡ g ≡ 0, which, up to a reflection through the hyperspace t = 0, corresponds to the study of solutions to the equation − div(|t|1−2sA∇U) + |t|1−2sc = 0 which are even with respect to the t-variable; Hölder continuity of solutions which are odd in t is instead investigated in [20]. In addition, in [19] C and C bounds are derived for some inhomogeneous Neumann boundary problems (i.e. for g 6≡ 0) in the case c ≡ 0. The goal of the present note is to derive Sobolev-type regularity results for solutions to (1)–(2). Under suitable assumptions on c, h, g, the presence of the singular/degenerate homogenous weight, involving only the (N +1)-th variable t, makes the solutions to have derivates with respect to the first N variables x1, x2, . . . , xN belonging to a weighted H -space (with the same weight t1−2s); concerning the regularity of the derivative with respect to t, we obtain instead that the weighted derivative t1−2s ∂U ∂t belongs to a H-space with the dual weight t2s−1, confirming what has already been observed in [19, Lemma 7.1] for even solutions of the reflected problem corresponding to (1)–(2) with h ≡ g ≡ 0.
一些退化和奇异问题的sobolev型正则性和pohozaev型恒等式
在半(N+1)维球的底部。从证明局部Hölder连续性结果和Harnack不等式的开创性论文[7]开始,人们对这类方程和相关正则性问题的兴趣就得到了发展,近年来,由于对分数拉普拉斯算子实现为狄利克雷-诺依曼映射的研究,人们对它的兴趣显著增长[3]。在这种情况下,在最近关于(1)-(2)型问题的正则性结果中,我们提到了Schauder和梯度估计的[2]和[12],其中A是单位矩阵,c≠0。在[19,20]中考虑了更一般的(1)型退化/奇异方程,允许变系数矩阵a。在[19]中,在关于A和c的适当正则性假设下,在H Select g Select 0的情况下,建立了(1)–(2)的解的Hölder连续性和c正则性,它直到通过超空间t=0的反射,对应于对方程−div(|t|1−2sAŞU)+|t|1−2sc=0的解的研究,这些解相对于t变量是偶数的;在[20]中研究了t中奇数解的Hölder连续性。此外,在[19]中,对于一些非齐次Neumann边界问题(即g6≠0),在C≠0的情况下,导出了C和C的界。本注释的目的是导出(1)-(2)解的Sobolev型正则性结果。在对c,h,g的适当假设下,仅涉及第(N+1)个变量t的奇异/退化齐次权的存在使得解具有关于前N个变量x1,x2,…的导数,xN属于加权的H-空间(具有相同的权重t1−2s);关于导数相对于t的正则性,我们得到了加权导数t1−2sõUõt属于具有对偶权重t2s−1的H空间,证实了在[19,引理7.1]中已经观察到的关于对应于(1)-(2)的反射问题的偶数解的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rendiconti Lincei-Matematica e Applicazioni
Rendiconti Lincei-Matematica e Applicazioni MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信