{"title":"A mapping method for anomaly detection in a localized population of structures","authors":"Weijiang Lin, K. Worden, A. E. Maguire, E. Cross","doi":"10.1017/dce.2022.25","DOIUrl":null,"url":null,"abstract":"Abstract Population-based structural health monitoring (PBSHM) provides a means of accounting for inter-turbine correlations when solving the problem of wind farm anomaly detection. Across a wind farm, where a group of structures (turbines) is placed in close vicinity to each other, the environmental conditions and, thus, structural behavior vary in a spatiotemporal manner. Spatiotemporal trends are often overlooked in the existing data-based wind farm anomaly detection methods, because most current methods are designed for individual structures, that is, detecting anomalous behavior of a turbine based on the past behavior of the same turbine. In contrast, the idea of PBSHM involves sharing data across a population of structures and capturing the interactions between structures. This paper proposes a population-based anomaly detection method, specifically for a localized population of structures, which accounts for the spatiotemporal correlations in structural behavior. A case study from an offshore wind farm is given to demonstrate the potential of the proposed method as a wind farm performance indicator. It is concluded that the method has the potential to indicate operational anomalies caused by a range of factors across a wind farm. The method may also be useful for other tasks such as wind power and turbine load modeling.","PeriodicalId":34169,"journal":{"name":"DataCentric Engineering","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DataCentric Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dce.2022.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Population-based structural health monitoring (PBSHM) provides a means of accounting for inter-turbine correlations when solving the problem of wind farm anomaly detection. Across a wind farm, where a group of structures (turbines) is placed in close vicinity to each other, the environmental conditions and, thus, structural behavior vary in a spatiotemporal manner. Spatiotemporal trends are often overlooked in the existing data-based wind farm anomaly detection methods, because most current methods are designed for individual structures, that is, detecting anomalous behavior of a turbine based on the past behavior of the same turbine. In contrast, the idea of PBSHM involves sharing data across a population of structures and capturing the interactions between structures. This paper proposes a population-based anomaly detection method, specifically for a localized population of structures, which accounts for the spatiotemporal correlations in structural behavior. A case study from an offshore wind farm is given to demonstrate the potential of the proposed method as a wind farm performance indicator. It is concluded that the method has the potential to indicate operational anomalies caused by a range of factors across a wind farm. The method may also be useful for other tasks such as wind power and turbine load modeling.