I. B. Rivas-Ortiz, D. S. Dominguez, C. Hernández, S. M. Iglesias
{"title":"A multi-group extended linear discontinuous method for fixed-source discrete ordinates problems in slab geometry","authors":"I. B. Rivas-Ortiz, D. S. Dominguez, C. Hernández, S. M. Iglesias","doi":"10.1504/IJNEST.2019.10020881","DOIUrl":null,"url":null,"abstract":"At present, neutron density calculation in non-multiplying media is relevant in many areas of engineering and science. In this paper, we propose the Extended Linear Discontinuous (ELD) method in multi-group discrete ordinates formulation, originally formulated for one-energy group fixed-source problems with isotropic scattering source in slab geometry. The proposed auxiliary equations are uncoupled on angular directions and combine the linear discontinuous approximation of the finite element method and the quasi-analytical general solution of the spectral nodal method. Thus, we can implement an efficient and simple algorithm using the conventional source iteration scheme for the sweeping equations. Numerical results for benchmark problems are presented to illustrate the accuracy and computational performance of the ELD method. The work shows that the main advantages of the proposed method are that the numerical scheme is stable for coarse-meshes, and its numerical results are more accurate than those generated by the Diamond Difference (DD) and Linear Discontinuous (LD) methods.","PeriodicalId":35144,"journal":{"name":"International Journal of Nuclear Energy Science and Technology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nuclear Energy Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNEST.2019.10020881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 1
Abstract
At present, neutron density calculation in non-multiplying media is relevant in many areas of engineering and science. In this paper, we propose the Extended Linear Discontinuous (ELD) method in multi-group discrete ordinates formulation, originally formulated for one-energy group fixed-source problems with isotropic scattering source in slab geometry. The proposed auxiliary equations are uncoupled on angular directions and combine the linear discontinuous approximation of the finite element method and the quasi-analytical general solution of the spectral nodal method. Thus, we can implement an efficient and simple algorithm using the conventional source iteration scheme for the sweeping equations. Numerical results for benchmark problems are presented to illustrate the accuracy and computational performance of the ELD method. The work shows that the main advantages of the proposed method are that the numerical scheme is stable for coarse-meshes, and its numerical results are more accurate than those generated by the Diamond Difference (DD) and Linear Discontinuous (LD) methods.
期刊介绍:
Today, nuclear reactors generate nearly one quarter of the electricity in nations representing two thirds of humanity, and other nuclear applications are integral to many aspects of the world economy. Nuclear fission remains an important option for meeting energy requirements and maintaining a balanced worldwide energy policy; with major countries expanding nuclear energy"s role and new countries poised to introduce it, the key issue is not whether the use of nuclear technology will grow worldwide, even if public opinion concerning safety, the economics of nuclear power, and waste disposal issues adversely affect the general acceptance of nuclear power, but whether it will grow fast enough to make a decisive contribution to the global imperative of sustainable development.