Restricted Partitions: The Polynomial Case

IF 0.6 4区 数学 Q3 MATHEMATICS
V. L. Chernyshev, T. W. Hilberdink, D. S. Minenkov, V. E. Nazaikinskii
{"title":"Restricted Partitions: The Polynomial Case","authors":"V. L. Chernyshev,&nbsp;T. W. Hilberdink,&nbsp;D. S. Minenkov,&nbsp;V. E. Nazaikinskii","doi":"10.1134/S0016266322040074","DOIUrl":null,"url":null,"abstract":"<p> We prove a restricted inverse prime number theorem for an arithmetical semigroup with polynomial growth of the abstract prime counting function. The adjective “restricted” refers to the fact that we consider the counting function of abstract integers of degree <span>\\(\\le t\\)</span> whose prime factorization may only contain the first <span>\\(k\\)</span> abstract primes (arranged in nondescending order of their degree). The theorem provides the asymptotics of this counting function as <span>\\(t,k\\to\\infty\\)</span>. The study of the discussed asymptotics is motivated by two possible applications in mathematical physics: the calculation of the entropy of generalizations of the Bose gas and the study of the statistics of propagation of narrow wave packets on metric graphs. </p>","PeriodicalId":575,"journal":{"name":"Functional Analysis and Its Applications","volume":"56 4","pages":"299 - 309"},"PeriodicalIF":0.6000,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Analysis and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S0016266322040074","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a restricted inverse prime number theorem for an arithmetical semigroup with polynomial growth of the abstract prime counting function. The adjective “restricted” refers to the fact that we consider the counting function of abstract integers of degree \(\le t\) whose prime factorization may only contain the first \(k\) abstract primes (arranged in nondescending order of their degree). The theorem provides the asymptotics of this counting function as \(t,k\to\infty\). The study of the discussed asymptotics is motivated by two possible applications in mathematical physics: the calculation of the entropy of generalizations of the Bose gas and the study of the statistics of propagation of narrow wave packets on metric graphs.

限制分区:多项式情况
用抽象素数计数函数的多项式增长证明了算术半群的一个限制反素数定理。形容词“限制的”是指我们考虑的次数为\(\le t\)的抽象整数的计数函数,其质因数分解可能只包含第一个\(k\)抽象素数(按其次数的非降序排列)。该定理提供了该计数函数的渐近性,如\(t,k\to\infty\)。所讨论的渐近性的研究是由数学物理中的两个可能的应用驱动的:玻色气体广义化的熵的计算和度量图上窄波包传播的统计研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Functional Analysis and Its Applications publishes current problems of functional analysis, including representation theory, theory of abstract and functional spaces, theory of operators, spectral theory, theory of operator equations, and the theory of normed rings. The journal also covers the most important applications of functional analysis in mathematics, mechanics, and theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信