Moduli spaces of a family of topologically non quasi-homogeneous functions

Pub Date : 2018-10-31 DOI:10.5565/PUBLMAT6311902
J. Loubani
{"title":"Moduli spaces of a family of topologically non quasi-homogeneous functions","authors":"J. Loubani","doi":"10.5565/PUBLMAT6311902","DOIUrl":null,"url":null,"abstract":"We consider a topological class of a germ of complex analytic function in two variables which does not belong to its jacobian ideal. Such a function is not quasi homogeneous. Each element f in this class induces a germ of foliation (df = 0). Proceeding similarly to the homogeneous case and the quasi homogeneous case treated by Genzmer and Paul, we describe the local moduli space of the foliations in this class and give analytic normal forms. We prove also the uniqueness of these normal forms.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/PUBLMAT6311902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider a topological class of a germ of complex analytic function in two variables which does not belong to its jacobian ideal. Such a function is not quasi homogeneous. Each element f in this class induces a germ of foliation (df = 0). Proceeding similarly to the homogeneous case and the quasi homogeneous case treated by Genzmer and Paul, we describe the local moduli space of the foliations in this class and give analytic normal forms. We prove also the uniqueness of these normal forms.
分享
查看原文
拓扑非拟齐次函数族的模空间
我们考虑一个复解析函数胚在两个变量中的拓扑类,它不属于它的雅可比理想。这样的函数不是拟齐次的。这一类中的每个元素f都会引发一个叶理芽(df=0)。类似于Genzmer和Paul处理的齐次情形和拟齐次情形,我们描述了这类叶理的局部模量空间,并给出了解析正规形式。我们还证明了这些正规形式的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信