Non-universality in clustered ballistic annihilation

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
M. Junge, Arturo Ortiz San Miguel, Lily Reeves, Cynthia Rivera S'anchez
{"title":"Non-universality in clustered ballistic annihilation","authors":"M. Junge, Arturo Ortiz San Miguel, Lily Reeves, Cynthia Rivera S'anchez","doi":"10.1214/23-ecp529","DOIUrl":null,"url":null,"abstract":"In ballistic annihilation, infinitely many particles with randomly assigned velocities move across the real line and mutually annihilate upon contact. We introduce a variant with superimposed clusters of multiple stationary particles. Our main result is that the critical initial cluster density to ensure species survival depends on both the mean and variance of the cluster size. Our result contrasts with recent ballistic annihilation universality findings with respect to particle spacings. A corollary of our theorem resolves an open question for coalescing ballistic annihilation.","PeriodicalId":50543,"journal":{"name":"Electronic Communications in Probability","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Communications in Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/23-ecp529","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

In ballistic annihilation, infinitely many particles with randomly assigned velocities move across the real line and mutually annihilate upon contact. We introduce a variant with superimposed clusters of multiple stationary particles. Our main result is that the critical initial cluster density to ensure species survival depends on both the mean and variance of the cluster size. Our result contrasts with recent ballistic annihilation universality findings with respect to particle spacings. A corollary of our theorem resolves an open question for coalescing ballistic annihilation.
集群弹道湮灭中的非普遍性
在弹道湮灭中,具有随机指定速度的无限多个粒子穿过实线,并在接触时相互湮灭。我们介绍了一种具有多个静止粒子的叠加簇的变体。我们的主要结果是,确保物种生存的临界初始聚类密度取决于聚类大小的平均值和方差。我们的结果与最近关于粒子间距的弹道湮灭普遍性发现形成对比。我们定理的一个推论解决了聚结弹道湮灭的一个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Communications in Probability
Electronic Communications in Probability 工程技术-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
38
审稿时长
6-12 weeks
期刊介绍: The Electronic Communications in Probability (ECP) publishes short research articles in probability theory. Its sister journal, the Electronic Journal of Probability (EJP), publishes full-length articles in probability theory. Short papers, those less than 12 pages, should be submitted to ECP first. EJP and ECP share the same editorial board, but with different Editors in Chief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信