An improved MITC3 element for vibration response analysis of piezoelectric functionally graded porous plates

IF 3.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ngoc-Tu Do , Trung Thanh Tran , Trung Nguyen-Thoi , Quoc Hoa Pham
{"title":"An improved MITC3 element for vibration response analysis of piezoelectric functionally graded porous plates","authors":"Ngoc-Tu Do ,&nbsp;Trung Thanh Tran ,&nbsp;Trung Nguyen-Thoi ,&nbsp;Quoc Hoa Pham","doi":"10.1016/j.finmec.2023.100231","DOIUrl":null,"url":null,"abstract":"<div><p>The main goal of this paper is to improve the mixed interpolation of tensorial components triangular (MITC3) by using the edge-based smoothed finite element method (ES-FEM), so-called ES-MITC3, for analyzing the vibration of piezoelectric functionally graded porous (p-FGP) plates subjected to dynamic loading. The material properties of the FGP core vary through thickness with uneven porosity distribution. Besides, the linear relationship between the electric potential and the thickness of the piezoelectric sublayer is taken into account. A closed-loop control algorithm is employed to actively control the vibration of p-FGP plates, through feedback from displacement and velocity. The performance of the proposed method is verified through comparative examples. Finally, the authors hope that the present method can be effectively applied to many smart material models in a multiphysics environment and contribute to understanding texture control by piezoelectric materials through numerical results.</p></div>","PeriodicalId":93433,"journal":{"name":"Forces in mechanics","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forces in mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666359723000665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The main goal of this paper is to improve the mixed interpolation of tensorial components triangular (MITC3) by using the edge-based smoothed finite element method (ES-FEM), so-called ES-MITC3, for analyzing the vibration of piezoelectric functionally graded porous (p-FGP) plates subjected to dynamic loading. The material properties of the FGP core vary through thickness with uneven porosity distribution. Besides, the linear relationship between the electric potential and the thickness of the piezoelectric sublayer is taken into account. A closed-loop control algorithm is employed to actively control the vibration of p-FGP plates, through feedback from displacement and velocity. The performance of the proposed method is verified through comparative examples. Finally, the authors hope that the present method can be effectively applied to many smart material models in a multiphysics environment and contribute to understanding texture control by piezoelectric materials through numerical results.

一种用于压电功能梯度多孔板振动响应分析的改进MITC3单元
本文的主要目的是利用基于边缘的光滑有限元法(ES-FEM),即ES-MITC3,改进张拉分量三角形混合插值法(MITC3),用于分析压电功能梯度多孔(p-FGP)板在动载荷作用下的振动。FGP岩心的材料性能随厚度而变化,孔隙率分布不均匀。同时考虑了电势与压电子层厚度之间的线性关系。采用闭环控制算法,通过位移和速度反馈对p-FGP板的振动进行主动控制。通过对比算例验证了该方法的有效性。最后,作者希望该方法能够有效地应用于多物理场环境下的许多智能材料模型,并通过数值结果有助于理解压电材料的织构控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forces in mechanics
Forces in mechanics Mechanics of Materials
CiteScore
3.50
自引率
0.00%
发文量
0
审稿时长
52 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信