{"title":"A survey on some vanishing viscosity limit results","authors":"H. Beirão da Veiga, F. Crispo","doi":"10.1515/anona-2022-0309","DOIUrl":null,"url":null,"abstract":"Abstract We present a survey concerning the convergence, as the viscosity goes to zero, of the solutions to the three-dimensional evolutionary Navier-Stokes equations to solutions of the Euler equations. After considering the Cauchy problem, particular attention is given to the convergence under Navier slip-type boundary conditions. We show that, in the presence of flat boundaries (typically, the half-space case), convergence holds, uniformly in time, with respect to the initial data’s norm. In spite of this result (and of a similar result for arbitrary two-dimensional domains), strong inviscid limit results are proved to be false in general domains, in correspondence to a very large family of smooth initial data. In Section 6, we present a result in this direction.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0309","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract We present a survey concerning the convergence, as the viscosity goes to zero, of the solutions to the three-dimensional evolutionary Navier-Stokes equations to solutions of the Euler equations. After considering the Cauchy problem, particular attention is given to the convergence under Navier slip-type boundary conditions. We show that, in the presence of flat boundaries (typically, the half-space case), convergence holds, uniformly in time, with respect to the initial data’s norm. In spite of this result (and of a similar result for arbitrary two-dimensional domains), strong inviscid limit results are proved to be false in general domains, in correspondence to a very large family of smooth initial data. In Section 6, we present a result in this direction.