Spacetime harmonic functions and the mass of 3-dimensional asymptotically flat initial data for the Einstein equations

IF 1.3 1区 数学 Q1 MATHEMATICS
Sven Hirsch, Demetre Kazaras, M. Khuri
{"title":"Spacetime harmonic functions and the mass of 3-dimensional asymptotically flat initial data for the Einstein equations","authors":"Sven Hirsch, Demetre Kazaras, M. Khuri","doi":"10.4310/jdg/1669998184","DOIUrl":null,"url":null,"abstract":"We give a lower bound for the Lorentz length of the ADM energy-momentum vector (ADM mass) of 3-dimensional asymptotically flat initial data sets for the Einstein equations. The bound is given in terms of linear growth `spacetime harmonic functions' in addition to the energy-momentum density of matter fields, and is valid regardless of whether the dominant energy condition holds or whether the data possess a boundary. A corollary of this result is a new proof of the spacetime positive mass theorem for complete initial data or those with weakly trapped surface boundary, and includes the rigidity statement which asserts that the mass vanishes if and only if the data arise from Minkowski space. The proof has some analogy with both the Witten spinorial approach as well as the marginally outer trapped surface (MOTS) method of Eichmair, Huang, Lee, and Schoen. Furthermore, this paper generalizes the harmonic level set technique used in the Riemannian case by Bray, Stern, and the second and third authors, albeit with a different class of level sets. Thus, even in the time-symmetric (Riemannian) case a new inequality is achieved.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jdg/1669998184","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 29

Abstract

We give a lower bound for the Lorentz length of the ADM energy-momentum vector (ADM mass) of 3-dimensional asymptotically flat initial data sets for the Einstein equations. The bound is given in terms of linear growth `spacetime harmonic functions' in addition to the energy-momentum density of matter fields, and is valid regardless of whether the dominant energy condition holds or whether the data possess a boundary. A corollary of this result is a new proof of the spacetime positive mass theorem for complete initial data or those with weakly trapped surface boundary, and includes the rigidity statement which asserts that the mass vanishes if and only if the data arise from Minkowski space. The proof has some analogy with both the Witten spinorial approach as well as the marginally outer trapped surface (MOTS) method of Eichmair, Huang, Lee, and Schoen. Furthermore, this paper generalizes the harmonic level set technique used in the Riemannian case by Bray, Stern, and the second and third authors, albeit with a different class of level sets. Thus, even in the time-symmetric (Riemannian) case a new inequality is achieved.
时空调和函数和爱因斯坦方程的三维渐近平坦初始数据的质量
我们给出了三维渐近平坦初始数据集的ADM能量动量矢量(ADM质量)的洛伦兹长度的下界。除了物质场的能量-动量密度外,该边界还以线性增长的“时空调和函数”给出,并且无论主导能量条件是否成立或数据是否具有边界,该边界都是有效的。这一结果的一个推论是对完全初始数据或具有弱捕获表面边界的数据的时空正质量定理的一个新的证明,并包括刚性陈述,该陈述断言质量当且仅当数据来自闵可夫斯基空间时消失。该证明与Witten spinorals方法以及eichmaair, Huang, Lee和Schoen的边际外捕获面(MOTS)方法有一些相似之处。此外,本文推广了Bray, Stern和第二和第三作者在黎曼情况下使用的调和水平集技术,尽管使用了不同类别的水平集。因此,即使在时间对称(黎曼)情况下,也得到了一个新的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信