Tribological evaluation of few-layer nitrogen-doped graphene as an efficient lubricant additive on engine cylinder liner: Experiment and mechanism investigation
Wenwu Lei, Wentao Tang, Xiaoyu Mo, Z. Tian, Peikang Shen, T. Ouyang
{"title":"Tribological evaluation of few-layer nitrogen-doped graphene as an efficient lubricant additive on engine cylinder liner: Experiment and mechanism investigation","authors":"Wenwu Lei, Wentao Tang, Xiaoyu Mo, Z. Tian, Peikang Shen, T. Ouyang","doi":"10.1115/1.4056905","DOIUrl":null,"url":null,"abstract":"\n The restricted adsorption capacity of ordinary graphene at high temperature limits its application in engine lubrication. To address this, nitrogen-doped element-modified graphene with strong adsorption and superior lubricating properties is prepared by a bottom-up chemical strategy in this study. The reciprocating tribometer is aimed at simulating the piston operating environment to determine the lubrication performance of nitrogen-doped graphene. The characterization and analysis for the wear marks are performed by means of depth-of-field microscope, scanning electron microscope, energy dispersive spectrometer and other instruments. The experimental data demonstrates that the friction-reduction and anti-wear properties of PAO 6 base oil are enhanced by 22.4% and 56.9% (100 °C), respectively, after the addition of 0.4 wt% nitrogen-doped graphene. Besides, the abrasive and adhesive wear are significantly reduced, which is attributed to its inter-layer slip along the sliding direction and superior adsorption performance. Finally, the interfacial lubrication mechanism of lubricant protective film under high temperature conditions is revealed.","PeriodicalId":17586,"journal":{"name":"Journal of Tribology-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tribology-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056905","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1
Abstract
The restricted adsorption capacity of ordinary graphene at high temperature limits its application in engine lubrication. To address this, nitrogen-doped element-modified graphene with strong adsorption and superior lubricating properties is prepared by a bottom-up chemical strategy in this study. The reciprocating tribometer is aimed at simulating the piston operating environment to determine the lubrication performance of nitrogen-doped graphene. The characterization and analysis for the wear marks are performed by means of depth-of-field microscope, scanning electron microscope, energy dispersive spectrometer and other instruments. The experimental data demonstrates that the friction-reduction and anti-wear properties of PAO 6 base oil are enhanced by 22.4% and 56.9% (100 °C), respectively, after the addition of 0.4 wt% nitrogen-doped graphene. Besides, the abrasive and adhesive wear are significantly reduced, which is attributed to its inter-layer slip along the sliding direction and superior adsorption performance. Finally, the interfacial lubrication mechanism of lubricant protective film under high temperature conditions is revealed.
期刊介绍:
The Journal of Tribology publishes over 100 outstanding technical articles of permanent interest to the tribology community annually and attracts articles by tribologists from around the world. The journal features a mix of experimental, numerical, and theoretical articles dealing with all aspects of the field. In addition to being of interest to engineers and other scientists doing research in the field, the Journal is also of great importance to engineers who design or use mechanical components such as bearings, gears, seals, magnetic recording heads and disks, or prosthetic joints, or who are involved with manufacturing processes.
Scope: Friction and wear; Fluid film lubrication; Elastohydrodynamic lubrication; Surface properties and characterization; Contact mechanics; Magnetic recordings; Tribological systems; Seals; Bearing design and technology; Gears; Metalworking; Lubricants; Artificial joints