A note on sparse polynomial interpolation in Dickson polynomial basis

IF 0.4 Q4 MATHEMATICS, APPLIED
E. Imamoglu, E. Kaltofen
{"title":"A note on sparse polynomial interpolation in Dickson polynomial basis","authors":"E. Imamoglu, E. Kaltofen","doi":"10.1145/3465002.3465003","DOIUrl":null,"url":null,"abstract":"The sparsity t≪ deg(f) with respect to the basis Pn has been exploited—since [9] —in interpolation algorithms that reconstruct the degree/coefficient expansion (δj, cj)1≤j≤t from values ai = f(γi) at the arguments x ← γi ∈ K. Current algorithms for standard and Chebyshev bases use i = 1, . . . , N = t + B values when an upper bound B ≥ t is provided on input. The sparsity t can also be computed “on-the-fly” from N = 2t+ 1 values by a randomized algorithm which fails with probability O(ǫ deg(f)), where ǫ≪ 1 can be chosen on input. See [3] for a list of references. This note considers Dickson Polynomials for the basis in which a sparse representation is sought. Wang and Yucas [10, Remark 2.5] define the n-th degree Dickson Polynomials Dn,k(x, a) ∈ K[x] of the (k + 1)’st kind for a parameter a ∈ K, a 6= 0, and k ∈ Z≥0, k 6= 2 recursively as as follows:","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"54 1","pages":"125 - 128"},"PeriodicalIF":0.4000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3465002.3465003","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3465002.3465003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

The sparsity t≪ deg(f) with respect to the basis Pn has been exploited—since [9] —in interpolation algorithms that reconstruct the degree/coefficient expansion (δj, cj)1≤j≤t from values ai = f(γi) at the arguments x ← γi ∈ K. Current algorithms for standard and Chebyshev bases use i = 1, . . . , N = t + B values when an upper bound B ≥ t is provided on input. The sparsity t can also be computed “on-the-fly” from N = 2t+ 1 values by a randomized algorithm which fails with probability O(ǫ deg(f)), where ǫ≪ 1 can be chosen on input. See [3] for a list of references. This note considers Dickson Polynomials for the basis in which a sparse representation is sought. Wang and Yucas [10, Remark 2.5] define the n-th degree Dickson Polynomials Dn,k(x, a) ∈ K[x] of the (k + 1)’st kind for a parameter a ∈ K, a 6= 0, and k ∈ Z≥0, k 6= 2 recursively as as follows:
关于Dickson多项式基上稀疏多项式插值的一个注记
自[9]以来,在插值算法中利用了相对于基Pn的稀疏性t≪deg(f),插值算法根据自变量x处的值ai=f(γi)重建度/系数展开(δj,cj)1≤j≤t← γi∈K。标准基和切比雪夫基的当前算法使用i=1,当在输入上提供上界B≥t时,N=t+B值。稀疏性t也可以通过随机算法从N=2t+1值“动态”计算,该算法以概率O(ǫdeg(f))失败,其中ǫ;≪1可以在输入时选择。参考文献列表见[3]。本文将Dickson多项式作为寻求稀疏表示的基础。Wang和Yucas[10,注2.5]递归地定义了参数a∈k,a6=0,k∈Z≥0,k6=2的(k+1)’t类的n次Dickson多项式Dn,k(x,a)∈k[x]如下:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信