Ramsey upper density of infinite graph factors

IF 0.6 Q3 MATHEMATICS
J. Balogh, Ander Lamaison
{"title":"Ramsey upper density of infinite graph factors","authors":"J. Balogh, Ander Lamaison","doi":"10.1215/00192082-10450499","DOIUrl":null,"url":null,"abstract":"The study of upper density problems on Ramsey theory was initiated by Erdős and Galvin in 1993. In this paper we are concerned with the following problem: given a fixed finite graph $F$, what is the largest value of $\\lambda$ such that every 2-edge-coloring of the complete graph on $\\mathbb{N}$ contains a monochromatic infinite $F$-factor whose vertex set has upper density at least $\\lambda$? \nHere we prove a new lower bound for this problem. For some choices of $F$, including cliques and odd cycles, this new bound is sharp, as it matches an older upper bound. For the particular case where $F$ is a triangle, we also give an explicit lower bound of $1-\\frac{1}{\\sqrt{7}}=0.62203\\dots$, improving the previous best bound of 3/5.","PeriodicalId":56298,"journal":{"name":"Illinois Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Illinois Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-10450499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

The study of upper density problems on Ramsey theory was initiated by Erdős and Galvin in 1993. In this paper we are concerned with the following problem: given a fixed finite graph $F$, what is the largest value of $\lambda$ such that every 2-edge-coloring of the complete graph on $\mathbb{N}$ contains a monochromatic infinite $F$-factor whose vertex set has upper density at least $\lambda$? Here we prove a new lower bound for this problem. For some choices of $F$, including cliques and odd cycles, this new bound is sharp, as it matches an older upper bound. For the particular case where $F$ is a triangle, we also give an explicit lower bound of $1-\frac{1}{\sqrt{7}}=0.62203\dots$, improving the previous best bound of 3/5.
无限图因子的Ramsey上密度
基于拉姆齐理论的上密度问题的研究是由埃尔德斯和加尔文于1993年发起的。在本文中,我们关注以下问题:给定一个固定的有限图$F$,$\lambda$的最大值是多少,使得$\mathbb{N}$上的完备图的每一个2-边着色都包含一个单色无限$F$因子,其顶点集的上密度至少为$\lambda$?在这里我们证明了这个问题的一个新的下界。对于$F$的一些选择,包括派系和奇数周期,这个新的上界是尖锐的,因为它与旧的上界相匹配。对于$F$是三角形的特殊情况,我们还给出了$1-\frac{1}{\sqrt{7}}=0.62203\dots$的显式下界,改进了先前3/5的最佳界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
18
期刊介绍: IJM strives to publish high quality research papers in all areas of mainstream mathematics that are of interest to a substantial number of its readers. IJM is published by Duke University Press on behalf of the Department of Mathematics at the University of Illinois at Urbana-Champaign.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信